Faculty of Science and Technology Second Semester, 2024–2025 Course Handouts # **Table of Contents** | S.No | Course
Code | Course Name | Page No. | |------|----------------|---|----------| | | | B.Tech I Year | | | 1 | MA121 | Mathematics II | 1-5 | | 2 | PH122 | Physics II | 6-10 | | 3 | ES123 | Environmental Science | 11-16 | | 4 | ES124 | Engineering Mechanics | 17-22 | | 5 | TA125 | Engineering Graphics | 23-29 | | 6 | TA126 | Computer Programming II | 30-35 | | | | B.Tech II Year | | | 7 | ES203 | Electrical Science II | 36-41 | | 8 | MG201 | Principle of Management | 42-45 | | 9 | MA303 | Operations Research | 46-52 | | 10 | CS314 | Operating System | 53-57 | | 11 | CS315 | Database Management Systems | 58-61 | | 12 | CS225 | Web Technology | 62-65 | | | | B.Tech III year | | | 13 | MKE641 | Digital Service and Marketing | 66-68 | | 14 | CS223 | Discrete Structure for Computer Science | 69-72 | | 15 | CS324 | Dot Net and C# Programming | 73-76 | | 16 | CS325 | Software Engineering | 77-80 | | 17 | CS327 | Theory of Computation | 81-84 | | 18 | CS328 | Machine Learning | 85-88 | | 19 | EC324 | RF and Microwave Engineering | 89-93 | | 20 | EC325 | Analog Electronics | 94-98 | | 21 | EC323 | Microelectronics Circuits | 99-106 | | 22 | EC322 | Antena and Wave Propogation | 107-116 | | 23 | EC321 | Digital Communications | 117-126 | | 24 | CE323 | Water Supply and Waste Water Management | 127-131 | | 25 | CE325 | Finite Element Analysis | 132-137 | | 26 | CE324 | Highway and Transportation Engineering | 138-142 | | 27 | CE322 | Design of Steel Structure II | 143-146 | | 28 | CE321 | Hydraulics & hydraulic Machines | 147-151 | Faculty of Science and Technology Second Semester, 2024-2025 Course Handouts | Course Code | Course Title | L | P | T | U | |-------------|----------------|---|---|---|---| | MA121 | Mathematics II | 3 | 0 | 1 | 4 | # Instructor-in-charge: Dr.ANIMESH KUMAR SHARMA # **Learning Objectives:** After Successful completion of the course, the student will be able to: - 1. Understand basic concept of Linear Algebra - 2. Learn the properties of Complex Numbers - 3. Applicants of theory of functions of complex variable. - 4. Learn about the concepts of C-R Equation - 5. Acquire knowledge about applied mathematics | Text Book (s)T1 | Higher Engineering Mathematics, B.S. Grewal, J.S.Grewal, | |--------------------|---| | | J.K.Dhanoa, Khanna Publishers, 44 th Edition, 2017 | | Reference Book (s) | Complex Variables and Applications, J. W. Brown, R. V. Churchill, | | R1 | Mc Graw-Hill, 7th Ed, 2003. | | Reference Book (s) | Complex analysis for Mathematics & Engineering, John H. Mathews | | R2 | & Russel W. Howell, Jones & Bartlett Publishers, 2001. | | Lecture
No. | Learning
Objective | Topics to be
Covered | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference
(Ch/Sec
/Pg Nos of Text
Book) | |----------------|---|---|--|--| | 1-4 | To understand algebraic and geometric properties of complex numbers | Complex
Numbers, argand
Plane, De-
moivre's theorem,
Roots of complex
number | Peer teaching | 639-642,647-
650,651-653
(T1) | | Lecture
No. | Learning
Objective | Topics to be
Covered | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference
(Ch/Sec
/Pg Nos of Text
Book) | |----------------|---|--|--|--| | 5-7 | To learn the concept of a function of a complex variable and the properties of complex function | Complex Functions ,Exponential function of a complex variable, circular functions, Hyperbolic functions, | Technology based learning | 656-661(T1) | | 8-10 | | Real and Imaginary parts of circular and hyperbolic functions, Logarithmic function of a complex variable, Summation of series 'C+iS' method | Peer teaching | 662-669 | | 11-15 | Calculus of
Complex
functions | Limit of a complex function ,derivative of f(z), C-R equations | Group learning and teaching | 672-674 | | 16-19 | To learn the concept of Riemann Sphere, C-R equations and harmonic | Analytic functions,
Harmonic
functions,
Orthogonal
system, Milne-
Thomson's
Method | Peer teaching | 674-684 | | Lecture
No. | Learning
Objective | Topics to be
Covered | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference
(Ch/Sec
/Pg Nos of Text
Book) | |----------------|---|--|--|--| | 20-21 | To learn the concepts of integrals and anti-derivatives of complex valued functions of a single variable | Complex integrations, (line inegrals), Cauchy theorem, Cauchy Integral Formula(Without proof) | Peer teaching | 694-700 | | 22-24 | To understand
the form of
Taylor's and
Laurent series
for an analytic
function of a
complex
variable | Taylor's and
Laurent series,
Zero's of analytic
function | Peer teaching | 704-710 | | 25-28 | Develop the
skill to find the
residues, poles
and zeros of
analytic
functions | Residues, Residue
theorem, Poles of
analytic Functions | Peer teaching | 710-715 | | 29-31 | Evaluation of certain types of definite and improper integrals using the theory of residues | Application of residues, Evaluation of real definite integrals | Peer teaching | 716-722 | | 32-35 | To learn theory of equations | General properties,
Intermediate value
property,
Descarte's rule of
signs, Relation
between roots and
coefficients | Peer teaching | 1-5 | | Lecture
No. | Learning
Objective | Topics to be
Covered | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference
(Ch/Sec
/Pg Nos of Text
Book) | |----------------|--|---|--|--| | 36-39 | Develop the
skill to find
various kind of
roots | Transformation of equations, Reciprocal equations | Peer teaching | 5-8 | | 39-44 | Solution of
Cubic and Bi-
quadratic
equations | Cardon's method,
Ferrari's method | Peer teaching | 9-15 | Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination. | Evaluation
Component | Duration | Weightage | Date | Syllabus (Lec.No.) | Remarks | |-------------------------|-------------------------|-----------|-------|--------------------|---------| | Test 1 | 60 Minutes | 20 | 01-19 | 01-19 | СВ | | Test 2 | 60 Minutes | 20 | 20-33 | 20-33 | ОВ | | Quiz/Assignment/Lab | Throughout the Semester | 20 | ** | ** | СВ | | Comprehensive Exam | 3 Hours | 40 | 01-44 | 01-44 | СВ | ^{**} To be announced in the class OB= Open Book CB= Close Book Exam **Make-up Policy:** Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must. **General:** It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc Date: 08/01/2025 Dr.ANIMESH KUMAR SHARMA Instructor-in-charge Faculty of Science and Technology Second Semester, 2024-2025 Course Handouts | Course Code | Course Title | L | P | T | U | |--------------------|--------------|---|---|---|---| | PH122 | Physics II | 3 | 1 | 0 | 4 | # **Instructor-in-charge: Dr.SHRUTIKA TIWARI** ## **Learning Objectives:** After successful completion of the course, the student will be able to: - 1. Physics II forms the Second part of a two-semester comprehensive course on core level physics to be taught to all engineering students. - 2. The course aims at developing an understanding of the basic principles of physics and the application of concepts to problems of practical interest. - 3. The emphasis is on improving the problem solving skills of students | Text Book T1 | Robert Resnick, David Halliday and Kenneth S.Krane, Fifth Edition, John Wiley and Sons, 2002 | |-------------------|--| | Reference Book R1 |
Robert Resnick, David Halliday and Jearl Walker, Sixth Edition,
John Wiley and Sons, 2001 | | Lecture
Nos. | Learning
Objective | Topics to be
covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference
(Chapter/Sec.
/Page Nos. of
Text/Ref.
Books) | |-----------------|--|--|--|--| | 1-8 | To discuss electric Charges and the fundamental electric force | Coulomb's law, continuous charge distributions. Electric field of point charges, continuous charge distributions, field lines, point charge and dipole in an | a. Group Learning and Teaching. | 25.4, 25.5,
26.1 – 26.7,
27.1 - 27.6 | | Lecture
Nos. | Learning
Objective | Topics to be covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference
(Chapter/Sec.
/Page Nos. of
Text/Ref.
Books) | |-----------------|--|---|--|--| | | | electric field. Flux of a vector field, flux of electric field, Gauss' law, its applications, Gauss' law and conductors. | | | | 9-13 | To study electrostatics using energy concepts | Electric potential, potential due to point charges and continuous charge distribution, calculating field from potential, potential from field, equipotential surfaces, potential of a charged conductor. Types of materials, conductor in an electric field, insulator in an electric field, Ohm's law. | c. Technology based
Learning. | 28.1 – 28.9,
29.1 – 29.6 | | 14-20 | Definition of
Capacitance
and
magnetic
field on
moving
charges | Capacitance, Capacitors in series and parallel, Energy storage in an electric field, Capacitor with Magnetic interactions, magnetic poles, force on a moving charge, force on a | a. Group Learning and Teaching | 30.1 – 30.6,
32.1 – 32.6 | | Lecture
Nos. | Learning
Objective | Topics to be covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference
(Chapter/Sec.
/Page Nos. of
Text/Ref.
Books) | |-----------------|---|--|--|---| | | | current carrying wire, Hall effect, torque on a current loop | | | | 21-31 | To study magnetic fields due to moving charges and currents | Magnetic field due to moving charge, due to current, parallel currents, field of a solenoid, Ampere's law. Faraday's law, Lenz' law, motional emf, induced electric fields, Magnetic dipole and force on a magnetic dipole in a non-uniform field, Magnetization, Gauss' law for magnetism, Inductance, Energy storage in a magnetic field | a. Group Learning and Teaching | 33.1 – 33.5,
34.1 – 34.4,
34.6, 35.1,
35.2, 35.4,
35.7 | | 32-40 | To study
displacement
currents and
Maxwell's
equations and
light | Equations of electromagnetism, Maxwell's equations, induced magnetic fields and displacement currents, Concept of photons, Thermal radiation, photoelectric | a. Group Learning and
Teaching | 38.1-38.3,
45.1-45.3,
46.1-46.7
(Excluding
46.3), 47.4,
47.5 | | Lecture
Nos. | Learning
Objective | Topics to be
covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference
(Chapter/Sec.
/Page Nos. of
Text/Ref.
Books) | |-----------------|-----------------------|-------------------------|--|--| | | | effect, Matter | | | | | | waves, de | | | | | | Broglie's | | | | | | hypothesis, | | | | | | experimental | | | | | | verification by | | | | | | Davisson and | | | | | | Germer | | | | | | experiment, | | | | | | uncertainty | | | | | | Principle, Bohr's | | | | | | Model of the | | | | | | hydrogen atom, | | | | | | Atomic Spectra | | | # Physics V Lab | S.No | Name of the Experiment | |------|--| | 1 | To determine the dispersive power of prism using spectrometer | | 2 | To determine the wavelength of a monochromatic light using Newton's Ring method | | 3 | To find the grating element using spectrometer | | 4 | To study the AC waveform using CRO | | 5 | To study LCR resonance circuit | | 6 | To study the characteristics of a solar cell | | 7 | To study Magnetic field along the axis of current carrying coil - Stewart and Gee"s method | | 8 | To determine the Hall voltage developed across the sample material. | | 9 | To draw the static current-voltage (I-V) characteristics of a junction diode. | | 10 | To verify Newton's Law of Cooling of different materials and different liquids. | Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination. | Evaluation
Component | Duration | Weightage | Date | Syllabus (Lec.No.) | Remarks | |-------------------------|-------------------------|-----------|------------|--------------------|---------| | Test 1 | 60 Minutes | 20 | 18-02-2025 | 1-20 | СВ | | Test 2 | 60 Minutes | 20 | 08-04-2025 | 21-40 | ОВ | | Quiz/Assignment/Lab | Throughout the Semester | 20 | ** | | СВ | | Comprehensive Exam | 3 Hours | 40 | 09-05-2025 | 1- 40 | СВ | ^{**} To be announced in the class CB= Close Book Exam OB= Open Book **Make-up Policy:** Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must. **General:** It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc Date: 10/01/2025 Dr.SHRUTIKA TIWARI Instructor-in-charge Faculty of Science and Technology Second Semester, 2024-2025 Course Handouts | Course Code | Course Title | L | P | T | U | |-------------|-----------------------|---|---|---|---| | ES123 | Environmental Science | 3 | 0 | 0 | 3 | # Instructor-in-charge: Dr.PRATIK KUMAR JAGTAP ## **Learning Outcomes:** - 1. Master core concepts and methods from ecological and physical sciences and their application in environmental problem solving. - 2. To describe the challenges of maintaining Soil quality and solid waste Management - 3. Understand the transnational character of environmental problems and ways of addressing them, including interactions across local to global scales. - 4. Apply systems concepts and methodologies to analyze and understand interactions between social and environmental processes. - Understanding of earth processes, evaluating alternative energy systems, pollution control and mitigation, natural resource management, and the effects of global warming and climate change | Text Book (s) T1 | Principles of Environmental Science and Engineering, P. Venugopala
Rao PHI Learning private limited, Publication) | |-------------------|--| | Text Book (s) T2 | A Textbook of Environmental Chemistry and Pollution Control by S.S. Dara (S. Chand and Company) | | Reference Book R1 | Masters, G.M. Introduction to Environment Engineering and Science (Prentice Hall of India) | | Reference Book R2 | Environmental Chemistry by A.K. Dey (Eastern Ltd.). | | Reference Book R3 | Environmental Chemistry by B.K. Sharma (Krishna Prakashan). | | Lecture
Nos. | Learning
objectives | Topics to be
covered | Teaching Learning Strategies a. Group Learning and Teaching b. Game Based Learning c. Technology Based Learning d. Peer Teaching e. Project Based Learning | Reference
(Ch./Sec.
/ Page Nos. of
Text Book) | |-----------------|---|--
---|--| | 1-3 | | Definition, Characteristics of Ecosystem: Structure of Ecosystem | Peer teaching | T1:40-44 | | 4-6 | Observe and describe habitats within ecosystems | Function of
ecosystem, Food
chain, Food web,
Trophic level,
Energy flow,
ecological
pyramids. | Technology based
Learning | T1: 46-54 | | 7-9 | | Types of ecosystems: Aquatic ecosystems Terrestrial ecosystems | Technology based
Learning | T1:59-71 | | 10-11 | Natural
Resources | Water Resources - Availability and Quality aspects. Mineral Resources, Soil, Material cycles- Carbon, Nitrogen and Sulphur Cycles. Energy - | Group Learning and Teaching | T2 110-120 | | 12-14 | | Different types of energy, Conventional and Non-Conventional | Peer teaching | | | 15-18 | | sources - Hydro
Electric, Fossil
Fuel based, | Group Learning and Teaching | T2: 132-147 | | Lecture
Nos. | Learning
objectives | Topics to be
covered | Teaching Learning Strategies a. Group Learning and Teaching b. Game Based Learning c. Technology Based Learning d. Peer Teaching e. Project Based Learning | Reference
(Ch./Sec.
/ Page Nos. of
Text Book) | |-----------------|------------------------|--|--|--| | | | Nuclear, Solar,
Biomass and
Geothermal
energy and Bio-
gas. Gas Hydrates,
Hydrogen as an
alternative future
source of Energy. | | | | 19 -21 | | Definition, Sources (Point and non-point). Classification of Water Pollutants. | Peer teaching | R2: 201-220 | | 22-25 | Water
pollution | Surface water pollution Heavy Metal pollution: Sources/Causes, Effects and Control Measures with reference to Cadmium, Chromium, Lead and Mercury. | Project based Learning. | R2: 12.11.1 -
12.11.12 | | 26-27 | | Groundwater pollution: Sources/Causes, Effects and Control Measures with reference to Nitrate, Fluoride and Arsenic. | Group Learning and Teaching | T1: 251-252 | | Lecture
Nos. | Learning
objectives | Topics to be covered | Teaching Learning Strategies a. Group Learning and Teaching b. Game Based Learning c. Technology Based Learning d. Peer Teaching e. Project Based Learning | Reference
(Ch./Sec.
/ Page Nos. of
Text Book) | |-----------------|------------------------|---|---|--| | 28-30 | | Wastewater Engineering: Primary, Secondary and Tertiary Waste water treatment, Water Softening. | Project based Learning. | T1: 153-162 | | 31- 33 | | Introduction-
definition-
classification of
air pollutants- air
quality standards.
Sources, Analysis, | Group Learning and Teaching | T1: 125-131 | | 34-37 | Air pollution | Secondary [photochemical smog, acid rain, ozone, PAN (Peroxy Acetyl Nitrate)], Green- house effect, ozone depletion, atmospheric stability and temperature inversion. | Peer teaching | R2:146-172 | | 38-40 | | Effects and control measures for Sox, NOx, PM and CO. | Technology based
Learning | T2 27-45 | | Lecture
Nos. | Learning
objectives | Topics to be
covered | Teaching Learning Strategies a. Group Learning and Teaching b. Game Based Learning c. Technology Based Learning d. Peer Teaching e. Project Based Learning | Reference
(Ch./Sec.
/ Page Nos. of
Text Book) | |-----------------|---------------------------|---|---|--| | | | Land Pollution,
Lithosphere,
Pollutants & their
origin and effect,
collection of solid
waste | Peer teaching | R2:172-185 | | | Land & Noise
Pollution | Solid waste management, recycling and reuse of solid waste and their disposal techniques (open dumping, sanitary land filling, thermal, composting). | Group Learning and Teaching | T2 68-76 | | | | Noise Pollution: Definitions of sound and noise. Sources of noise – Transport, neighborhood industrial and indoor. Noise, Vibration and Harshness. Decibel scale. | Project based Learning. | R2:166-178 | Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination. | Evaluation
Component | Duration | Weightage | Date | Syllabus (Lec.No.) | Remarks | |-------------------------|-------------------------|-----------|------------|--------------------|-------------------------------------| | Test 1 | 60 Minutes | 10 | 18-02-2025 | 1-12 | СВ | | Test 2 | 60 Minutes | 10 | 08-04-2025 | 13-28 | ОВ | | Project Work | Throughout the Semester | 10 | ** | | Working
models &
Presentation | | Comprehensive
Exam | 3 Hours | 70 | 07-05-2025 | 1- 40 | СВ | ^{**} To be announced in the class CB= Close Book Exam OB= Open Book **Make-up Policy:** Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must. **General:** It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc Date: 09/01/2025 Dr.PRATIK KUMAR JAGTAP Instructor-in-charge Faculty of Science and Technology Second Semester, 2024-2025 Course Handouts | Course | e Code | Course Title | L | P | T | U | |--------|--------|------------------------------|---|---|---|---| | ES | 124 | Engineering Mechanics | 3 | 0 | 0 | 3 | ## Instructor-in-charge: Mr.HEMANT KUMAR DEWANGAN ## **Learning Outcomes:** After successful completion of the course student will be able to: - 1. Solve for the resultants of any force system and determine equivalent force system. - 2. Determine displacement of completely constrained bodies by principles of virtual work and solve the mechanics problems associated with friction force. - 3. Calculate the centroid, first moment and second moment of area. - 4. Find the velocity and acceleration of rigid bodies in rectilinear and curvilinear motion. - 5. Analyze the forces acting on rigid body during translation motion. | Text Book T1 | Engineering Mechanics (Statics & Dynamics): A.K.Tayal, Umesh pub., Delhi | |-------------------|--| | Reference Book R1 | Engineering Mechanics (Statics & Dynamics): N.H.Dubey, Mc
Graw Hill Education pub., Chennai | | Reference Book R2 | S.S. Bhavikatti : Engineering Mechanics, New Age Pub., Fourth Edition. | | Reference Book R3 | S. Timoshenko and D.H. Youngh: Engineering Mechanics | | Swayam Link | https://www.classcentral.com/course/swayam-engineering-mechanics-14036 | | Lecture
Nos. | Learning
Objectives | Topics to be
covered | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference | |-----------------|---|---|--|---------------------| | | | Classification of Mechanics, Statics, Dynamics: kinetics & kinematics | Peer Teaching | T1, Ch-01, pg.1-2 | | | Introduction to
Engineering
Mechanics | Different laws of
mechanics:
Newton's law,
law of
transmissibility of
forces | Peer Teaching | T1, Ch-01, pg.2-6 | | | | parallelogram law
of forces, Free
Body Diagram | Peer Teaching | T1, Ch-02, pg.8-21 | | | | Equivalent Force System and Equilibrium, Conditions of equilibrium | Peer Teaching | T1, Ch-02, pg.22-27 | | 5-8 | Equilibrium of forces and couple | System of Forces,
application of
solving simple
problems | Peer Teaching | T1, Ch-02, pg.26-27 | | | | Different types of problem to be solved | Peer Teaching | T1, Ch-02, pg.27-45 | | 9-16 | Shear Force
and Bending
Moment | Types of supports
for beams, Beams
subjected to
concentrated loads
and uniformly
distributed loads | Peer Teaching | T1, Ch-10 | | | Diagram | Shear force and bending moment at any section of a | Peer Teaching | R1, Ch-10 | | Lecture
Nos. | Learning
Objectives | Topics to be
covered | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference | |-----------------|---------------------------|---|--|-------------------------| | | | beam Analytical
methods and
graphical methods | | | | | | Force polygon
and
couple
polygon.
Reactions at
supports. | Peer Teaching | R2, Ch-07 | | | | Various problems involved | Peer Teaching | R3, Ch-08 | | 17 | | Introduction,
Engineering
Structures | Peer Teaching | T1, Ch-9, pg.193 | | 18 | | Rigid or Perfect
Truss | Peer Teaching | T1, Ch-9, pg.194 | | 19 | Analysis of Plane Trusses | Truss: Determination of Axial Forces in the Members, Method of Joints | Peer Teaching | T1, Ch-9, pg.195 | | 20 | | Various problems involved | Peer Teaching | T1, Ch-9,
pg.195-199 | | 21 | | The Method of Sections | Peer Teaching | T1, Ch-9, pg.200-215 | | 22 | | Various problems involved | Peer Teaching | T1, Ch-9,
pg.216-219 | | Lecture
Nos. | Learning
Objectives | Topics to be
covered | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference | |-----------------|----------------------------|---|--|-----------------------| | 23 | | Introduction to
Friction, Dry
Friction, | Peer Teaching | T1, Ch-6, pg.122-124 | | 24 | | Rolling
Resistance, Force
of Friction on a
Wheel | Peer Teaching | T1, Ch-6, pg.125-147 | | 25 | Friction | Application of
Friction: Belt and
Rope Drive | Peer Teaching | T1, Ch-7, pg.148-149 | | 26 | | Belt Friction,
Centrifugal
Tension | Peer Teaching | T1, Ch-7, pg.154-157 | | 27 | | Initial Tension in
the Belt and
Power
Transmitted by
the Belt | Peer Teaching | T1, Ch-7, pg.158-165 | | 28 | | Kinematics: Introduction, Position Vector, Velocity and Acceleration | Peer Teaching | T1, Ch-15, pg.379 | | 29 | Curvilinear
Motion of a | Components of Motion: Rectangular Components | Peer Teaching | T1, Ch-15, pg.380 | | 30 | Particle | Components of Acceleration and Component of Motion | Peer Teaching | T1, Ch-15, pg.382-396 | | 31 | | Kinetics:
Introduction,
Equation of
Motion | Peer Teaching | T1, Ch-15, pg.399-400 | | Lecture
Nos. | Learning
Objectives | Topics to be
covered | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference | |-----------------|---|---|--|-----------------------| | 32 | | D'Alembert's
principle,
Working Concept-
Curvilinear
Motion, Motion of
Vehicles | Peer Teaching | T1, Ch-15, pg.401-415 | | 33 | | Introduction, work of a force, energy of a particle, and energy and its different types | Peer Teaching | T1, Ch-16, pg.428-433 | | 34 | Kinetics of a
Particle: Work
and Energy | Principle of Work
and Energy, Work
and Energy
Principle of for a
system of
Particles | Peer Teaching | T1, Ch-16, pg.433-436 | | 35 | | Potential Energy
and Conservative
Forces | Peer Teaching | T1, Ch-16, pg.437 | | 36 | | Principle of
Conservation of
Energy, Power | Peer Teaching | T1, Ch-16, pg.438-439 | | 37 | | Introduction, Principle of Impulse and momentum | Peer Teaching | T1, Ch-17, pg.457-458 | | 38 | Kinetics of Particle: Impulse and | Conservation of momentum, Problems to be solved | Peer Teaching | T1, Ch-17, pg.459-466 | | 39 | Momentum | Angular
Momentum,
Conservation of
Angular
Momentum | Peer Teaching | T1, Ch-17, pg.467-469 | | Lecture
Nos. | Learning
Objectives | Topics to be covered | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference | |-----------------|------------------------|-----------------------|--|-------------------| | 40 | | Problems to be solved | Peer Teaching | T1, Ch-17, pg.471 | Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination. | Evaluation
Component | Duration | Weightage | Date | Syllabus (Lec.No.) | Remarks | |-------------------------|-------------------------|-----------|-----------------|--------------------|---------| | Test 1 | 60 Minutes | 20 | 17-02-2025 | 1-20 | СВ | | Test 2 | 60 Minutes | 20 | 17-04-2025 | 21-40 | ОВ | | Quiz/Assignment/Lab | Throughout the Semester | 20 | ** | | СВ | | Comprehensive Exam | 3 Hours | 40 | 05-05-
2025€ | 1- 40 | СВ | ^{**} To be announced in the class CB= Close Book Exam OB= Open Book **Make-up Policy:** Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must. **General:** It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc Date: 07/01/2025 Mr.HEMANT KUMAR DEWANGAN Instructor-in-charge Faculty of Science and Technology Second Semester, 2024-2025 Course Handouts | Course Code | Course Title | L | P | T | U | |-------------|----------------------|---|---|---|---| | TA125 | Engineering Graphics | 2 | 2 | 0 | 4 | # **Instructor-in-charge: Mr.DILIP MISHRA** ## **Scope & Objective of the course:** - 1. To understand the standards and conventions followed in preparation of engineering drawings. - 2. Will enable the students to & the concepts of orthographic and isometric projections. - 3. To develop the ability of conveying the engineering information through drawings & to make them understand the relevance of engineering drawing to different engineering domains. - 4. The course will help them to develop the ability of producing engineering drawings using drawing instruments and enable them to use computer aided drafting packages for the generation of drawings | Text Book T1 | Engineering Drawing – N.D. Bhatt & V.M. Panchal, 48th edition, 2005- Charotar Publishing House, Gujarat | |-------------------|---| | Text Book T2 | Engineering Graphics – K.R. Gopalakrishna, 32nd edition, 2005-Subash Publishers Bangalore. | | Reference Book R1 | Engineering Drawing-by N.S.Parthasarathy & Vela Murali, Oxford University Press, 2015 | | Lecture
No. | Торіс | Description | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference/
Text Book | |----------------|---|--|---|-------------------------| | 1 | Importance of
Engineering
Drawing | Overview of engineering drawing, significance in | a. Group Learning and Teaching. | T1, PP 1–3 | | Lecture
No. | Торіс | Description | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference/
Text Book | |----------------|--|---|--|-------------------------| | | | design and communication. | | | | 2 | Scales:
Representative
Fraction | Definition and significance of representative fraction in scales. | b. Technology based
Learning. | T1, PP 4–7 | | 3 | Types of
Scales | Types such as plain and diagonal scales, their uses and construction. | a. Group Learning and Teaching | T1, PP 7–
12 | | 4 | Conic
Sections:
Ellipse,
Parabola,
Hyperbola | Basics and construction of conic sections. | e. Project based
Learning. | T1, PP 23–
25 | | 5 | Conic
Sections:
Ellipse,
Parabola,
Hyperbola | Basics and construction of conic sections. | a. Group Learning and Teaching | T1, PP 26–
28 | | 6 | Cycloidal Curves: Cycloid, Epicycloid, Hypocycloid | Construction and applications of cycloidal curves. | a. Group Learning and Teaching | T1, PP 28–
30 | | 7 | Cycloidal Curves: Cycloid, Epicycloid, Hypocycloid | Construction and applications of cycloidal curves. | b. Technology based
Learning. | T1, PP 31–
33 | | 8 | Involute | Drawing and practical use of involute curves. | a. Group Learning and Teaching | T1, PP 34–
36 | | Lecture
No. | Торіс | Description | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference/
Text Book | |----------------|---|---|--|-------------------------| | 9 | Introduction to Projection | Principles, methods, and symbols of projection. | b. Technology based
Learning. | T1, PP 36–
38 | | 10 | Planes of Projection & Four Quadrants | Understanding projection planes and quadrant division. | b. Technology
based
Learning. | T1, PP 39–
41 | | 11 | First and Third Angle Projections | Detailed study and distinction between first and third-angle projections. | a. Group Learning and Teaching | T1, PP 50–
53 | | 12 | First and Third Angle Projections | Detailed study and distinction between first and third-angle projections. | e. Project based
Learning. | T1, PP 53–
56 | | 13 | Projection of Points | Projection of points in different quadrants. | a. Group Learning and Teaching | T1, PP 57–
59 | | 14 | Projection of
Lines: Parallel
and
Perpendicular
Cases | Projections when lines are parallel/perpendicular to the planes. | a. Group Learning and Teaching | T1, PP 61–
63 | | 15 | Projection of
Lines: Parallel
and
Perpendicular
Cases | Projections when lines are parallel/perpendicular to the planes. | a. Group Learning and Teaching. | T1, PP 64–
66 | | 16 | Projection of
Lines:
Inclined Cases | Lines inclined to one or both the planes with simple problems. | e. Project based
Learning. | T1, PP 67–
69 | | Lecture
No. | Торіс | Description | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference/
Text Book | |----------------|---|---|--|-------------------------| | 17 | Projection of
Lines:
Inclined Cases | Lines inclined to one or both the planes with simple problems. | a. Group Learning and Teaching | T1, PP 70–
72 | | 18 | Projection of Planes: Introduction | Types and principles of plane projection. | b. Technology based
Learning. | T1, PP 73–
75 | | 19 | Projection of Planes in Standard Positions | Perpendicular and parallel cases of planes relative to reference planes. | e. Project based
Learning. | T1, PP 80–
82 | | 20 | Projection of Planes in Standard Positions | Perpendicular and parallel cases of planes relative to reference planes. | e. Project based
Learning. | T1, PP 83–
85 | | 21 | Projection of
Planes:
Inclined Cases | Projections of planes inclined to one or both planes. | b. Technology based
Learning. | T1, PP 86–
88 | | 22 | Projection of
Planes:
Inclined Cases | Projections of planes inclined to one or both planes. | e. Project based
Learning. | T1, PP 95–
97 | | 23 | Projection of
Planes:
Inclined Cases | Projections of planes inclined to one or both planes. | e. Project based
Learning. | T1, PP 98–
100 | | 24 | Introduction to Solids | Overview of types and properties of solids. | e. Project based
Learning. | T1, PP
101–103 | | 25 | Projections of
Solids: Simple
Positions | Projections when solid axes are parallel/perpendicular to reference planes. | a. Group Learning and Teaching | T1, PP
104–106 | | Lecture
No. | Торіс | Description | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference/
Text Book | |----------------|--|---|--|-------------------------| | 26 | Projections of
Solids: Simple
Positions | Projections when solid axes are parallel/perpendicular to reference planes. | e. Project based
Learning. | T1, PP
110–112 | | 27 | Projections of
Solids:
Inclined Cases | Solids with axes inclined to one or both reference planes. | a. Group Learning and Teaching | T1, PP
120–123 | | 28 | Projections of
Solids:
Inclined Cases | Solids with axes inclined to one or both reference planes. | e. Project based
Learning. | T1, PP
124–126 | | 29 | Sections of
Solids | Types of section planes, true shape, and sectional views of solids. | e. Project based
Learning. | T1, PP
127–129 | | 30 | Sections of
Solids | Types of section planes, true shape, and sectional views of solids. | a. Group Learning and Teaching | T1, PP
130–132 | | 31 | Introduction
to
Development
of Surfaces | Basics and importance of surface development in engineering applications. | e. Project based
Learning. | T1, PP
150–152 | | 32 | Development
of Lateral
Surfaces:
Cube, Prisms,
Cylinders | Practical methods for developing surfaces of these shapes. | e. Project based
Learning. | T1, PP
153–155 | | 33 | Development
of Lateral
Surfaces:
Cube, Prisms,
Cylinders | Practical methods for developing surfaces of these shapes. | a. Group Learning and Teaching | T1, PP
156–159 | | Lecture
No. | Торіс | Description | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference/
Text Book | |----------------|--|---|--|-------------------------| | 34 | Development of Lateral Surfaces: Pyramids & Cone | Techniques for development of these shapes. | e. Project based
Learning. | T1, PP
170–172 | | 35 | Development of Lateral Surfaces: Pyramids & Cone | Techniques for development of these shapes. | b. Technology based
Learning. | T1, PP
173–175 | | 36 | Introduction
to Isometric
Projection | Understanding isometric axes, lines, and planes. | e. Project based
Learning. | T1, PP
176–178 | | 37 | Isometric
Scale | Construction and use of isometric scales. | b. Technology based
Learning. | T1, PP
179–181 | | 38 | Isometric View of Simple Objects | Drawing isometric projections for basic objects. | e. Project based
Learning. | T1, PP
182–184 | | 39 | Introduction to CAD | Overview, benefits, and limitations of CAD systems. | a. Group Learning and Teaching | T1, PP
185–187 | | 40 | CAD Software and Basic Commands | Introduction to AutoCAD and essential commands for drawing. | c. Technology based
Learning | T1, PP
188–190 | | 41 | Concept of
Layers and
Dimensioning | Working with layers, dimensioning, and adding text in CAD. | c. Technology based
Learning | Various | | Lecture
No. | Торіс | Description | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference/
Text Book | |----------------|-------------------------|--|---|-------------------------| | 42 | Creation of 2D Drawings | Practical session on creating two-dimensional drawings in AutoCAD. | c. Technology based
Learning | Various | Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination. | Evaluation
Component | Duration | Weightage | Date | Syllabus (Lec.No.) | Remarks | |-------------------------|-------------------------|-----------|------------|--------------------|---------| | Test 1 | 60 Minutes | 20 | 19-02-2025 | 1-15 | СВ | | Test 2 | 60 Minutes | 20 | 09-04-2025 | 16-30 | ОВ | | Quiz/Assignment/Lab | Throughout the Semester | 20 | ** | ** | СВ | | Comprehensive Exam | 3 Hours | 40 | 12-05-2025 | 1-40 | СВ | ^{**} To be announced in the class CB= Close Book Exam OB= Open Book **Make-up Policy:** Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must. **General:** It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc Date: 02/01/2025 Mr.DILIP MISHRA Instructor-in-charge Faculty of Science and Technology Second Semester, 2024-2025 Course Handouts | Course Code | Course Title | L | P | T | U | |-------------|-------------------|---|---|---|---| | TA126 | Computer Graphics | 3 | 1 | 0 | 4 | # Instructor-in-charge: Dr.B RAVI KIRAN ## **Learning Outcomes:** This course is offered as a technical art subject to engineering students. It focuses on training the students rigorously in the skills of a structured programming language, particularly in C and application of such language in problem solving. | Text Book T1 | "Programming with ANSI C", E. Balaguruswamy, TMH 4th edition, 2004. | |-------------------|---| | Reference Book R1 | "Programming with C", Gottfried, Schaum -TMH, 2nd Edition, 2002. | | Reference Book R2 | "A Book on C", Al Kelly & Ira Pohl, Pearsons, 4th Edition, 2001 | | Reference Book R3 | "The C Programming Language", Kernighan & Ritchie, 2nd Edition PHI, 2002. | | Lecture
No. | Learning
Objective | Topics to be
Covered | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | (Ch./Sec./
Text Book) | |----------------|---|---
--|--------------------------| | 1 | Overview of C | History, Sample program, basic structure of C, executing a C program | a. Group Learning and
Teaching | T1 Ch.1 | | 2-3 | Constants,
Variables and
Data types | Constants,
variables, data
types, storage
classes,
declarations | a. Group Learning and Teaching | T1 Ch.2 | | Lecture
No. | Learning
Objective | Topics to be
Covered | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | (Ch./Sec./
Text Book) | |----------------|-----------------------------------|---|--|--------------------------| | 4-5 | Operators and Expressions | Arithmetic, relational, logical, assignment, increment and decrement bitwise, conditional operators, expressions, operator precedence, type conversions, etc. | a. Group Learning and Teaching | T1 Ch.3 | | 6 | Input, output operations | Reading, writing characters, formatted i/o, etc | a. Group Learning and
Teaching | T1. Ch.4 | | 7 | Decision
making &
branching | If statement, if -
else, nested if,
switch statement,
etc | a. Group Learning and
Teaching | T1 Ch.5 | | 8 | Decision
making &
looping | While loop, do loop, for loop etc | a. Group Learning and
Teaching | T1 Ch.6 | | 9-10 | Arrays | One-
dimensional,
two-dimensional,
multi-
dimensional
arrays,
initialization, etc | a. Group Learning and
Teaching | T1 Ch.7 | | Lecture
No. | Learning
Objective | Topics to be
Covered | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | (Ch./Sec./
Text Book) | |----------------|----------------------------------|---|--|--------------------------| | 11-12 | Character
arrays &
strings | Declaring, initializing, reading, writing strings. Arithmetic operations on characters and string operations, etc | a. Group Learning and
Teaching | T1 Ch.8 | | 13-15 | Low level
Programming | Bitwise
Operations, Bit
fields | a. Group Learning and
Teaching | R1 Ch.13 | | 16-17 | Understanding
Functions | Definition of function, function calls, return values | a. Group Learning and Teaching | T1 Ch.9 | | 18-20 | User Defined
Functions | Types of functions, passing arguments, nesting, recursion, passing arrays | a. Group Learning and Teaching | T1 Ch.9 | | Lecture
No. | Learning
Objective | Topics to be
Covered | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | (Ch./Sec./
Text Book) | |----------------|---------------------------------|---|--|-----------------------------| | 21-23 | Understanding
Structures | Defining structure, accessing structure members, structure initialization, operations on individual members, arrays of structures | a. Group Learning and
Teaching | T1 Ch.10 | | 24 | Structures & Unions | Unions,
Structures Vs
Unions | a. Group Learning and
Teaching | T1 Ch.10 | | 25 | Dynamic
Memory
Allocation | Introduction, Dynamic Memory Allocation, Malloc, Calloc, Realloc | a. Group Learning and
Teaching | T1.
Ch.13(13.1-
13.6) | | 26-27 | Understanding
Pointers | Introduction,
accessing address
of a variable,
declaring
pointers,
initialization | a. Group Learning and
Teaching | T1. Ch.11
(11.1-11.5) | | 28-29 | Programming with Pointers | Accessing a variable through pointer, pointer expressions, pointer | a. Group Learning and
Teaching | T1. Ch.11
(11.6-11.9) | | Lecture
No. | Learning
Objective | Topics to be
Covered | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | (Ch./Sec./
Text Book) | |----------------|-------------------------------|--|--|----------------------------| | | | increments and scale factor | | | | 30-31 | Pointers & Arrays | Pointers &
Arrays, Pointers
& Strings, Array
of Pointers | a. Group Learning and
Teaching | T1. Ch.11
(11.10-11.12) | | 32-33 | Pointers & Functions | Pointers as function arguments, functions returning pointers, pointers & structures | a. Group Learning and
Teaching | T1. Ch.11
(11.13-11.16) | | 34-36 | File
Management | Opening a files, closing a file, I/O operations, Random Access to File, Command line arguments | a. Group Learning and
Teaching | T1. Ch.12 | | 37-42 | Data
Structures
using C | Implementation of linear linked lists, stacks, queues and binary trees | a. Group Learning and
Teaching | R2 Ch.10 T1.
Ch.13 | Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination. | Evaluation
Component | Duration | Weightage | Date | Syllabus (Lec.No.) | Remarks | |-------------------------|-------------------------|-----------|------------|--------------------|---------| | Test 1 | 60 Minutes | 10 | 17-02-2025 | 1-20 | СВ | | Test 2 | 60 Minutes | 10 | 07-04-2025 | 21-40 | ОВ | | Quiz/Assignment/Lab | Throughout the Semester | 10 | ** | | СВ | | Comprehensive Exam | 3 Hours | 70 | 01-05-2025 | 1- 40 | СВ | ^{**} To be announced in the class CB= Close Book Exam OB= Open Book **Make-up Policy:** Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must. **General:** It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc Date: 08/01/2025 Dr.B RAVI KIRAN Instructor-in-charge Faculty of Science and Technology Second Semester, 2024-2025 Course Handouts | Course Code | Course Title | L | P | T | U | |-------------|------------------------------|---|---|---|---| | ES203 | Electical Sciences II | 3 | 0 | 0 | 3 | Instructor-in-charge: Dr.K NAGAIAH ## **Learning Objectives:** After successful completion of the course student will be able to To give an insight to the analysis of single phase and three phase AC circuits and to introduce the theory and operational aspects of electrical machines. | Lecture
No. | Learning
Objective | Topics to be
covered | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | (Ch./Sec.
/Text Book) | |----------------|---|--|--|--------------------------| | 1-2 | Basics of AC circuit analysis | Analysis of AC circuits using phasor method | a. Group Learning and
Teaching | T1 4.1-4.3 | | 3-4 | Concept of complex power and power factor | Complex power and power factor improvement | a. Group Learning and
Teaching | T1 4.4 | | 5-6 | Concepts of
three phase
circuit
analysis | Three phase circuits; Star and delta configuration | a. Group Learning and Teaching | T1 6.1 - 6.5 | | Lecture
No. | Learning
Objective | Topics to be covered | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | (Ch./Sec.
/Text Book) | |----------------|---|---|--|--------------------------| | 7-8 | - do- | Analysis of three
phase circuits;
Three phase
power; Two watt
meter method of | a. Group Learning and Teaching | T1 6.6 - 6.8 | | 9-10 | Magnetic circuits and their analysis | Concept of Magnetic circuit, Analysis of magnetic circuits; Magnetization characteristic | a. Group Learning and
Teaching | T1 8.1 - 8.4 | | 11 | Concept of magnetic induction and force | Electro magnetic induction and force. Self & mutual inductances | a. Group Learning and Teaching | T1 8.5-8.6 | | 12-13 | Energy in
magnetic
circuits and
various Losses | Energy stored in magnetic systems and losses | a. Group Learning and Teaching | T1 8.7 - 8.9 | | 14-15 | Transformer basics | Transformer,
principles, types:
Ideal transformer | c.Technology
based
Learning | T1 9.1 - 9.3 | | Lecture
No. | Learning
Objective | Topics to be covered | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | (Ch./Sec.
/Text Book) | |----------------|--|---|--|--------------------------| | 16-17 | Transformer
modeling | Transformer circuit model and determination of its parameters using tests | c.Technology based
Learning | T1 9.4- 9.5 | | 18-19 | Transformer
Performance | Per unit system,
voltage
regulation,
efficiency | c.Technology based
Learning | T1 9.6 - 9.8 | | 20 | Various Types
of
transformers | Auto
Transformers, 3
phase
transformers and
Special
Transformers | c.Technology based
Learning | T1 9.9 - 9.11 | | 21- 22 | Concepts of rotating machines | Rotating
machines and
Elementary
Synchronous
machine | c.Technology based
Learning | T1 10.1 - 10.3 | | 23-24 | Concept of
EMF and
MMF | EMF and MMF in AC winding | c.Technology based
Learning | T1 10.4 - 10.5 | | 25 | Concept of torque in electric machines | Rotating
magnetic field
and expression
for torque | c.Technology based
Learning | T1 10.6 - 10.7 | | Lecture
No. | Learning
Objective | Topics to be covered | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | (Ch./Sec.
/Text Book) | |----------------|--|--|--|--------------------------| | 26 | Operation & constructional features of electric machines | Basic operation
and torque
production in
Synchronous,
Induction and
DC machines | c.Technology based
Learning | T1 10.8 | | 27-28 | - Do - | Losses & efficiency in electrical machines; cooling; matching of load characteristics | c.Technology based
Learning | T1 10.9 -
10.11 | | 29-30 | Constructional
features and
circuit model
of DC
machines | DC machines
:constructional
features emf &
torque Circuit
model | c.Technology based
Learning | T1 11.1 - 11.4 | | 31 | Concept of armature reaction and commutation | Armature reaction & commutation; Excitation and magnetization characteristics | c.Technology based
Learning | T1 11.5 -11.7 | | 32-33 | Performance of DC motors | Characteristics
and speed control
of
DC shunt, series
and compound
motors | c.Technology based
Learning | T1 11.8 | | Lecture
No. | Learning
Objective | Topics to be
covered | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | (Ch./Sec.
/Text Book) | |----------------|---|---|--|--------------------------| | 34 | - Do- | Starting and Efficiency calculation of DC motors | c.Technology based
Learning | T1 11.9 -11.10 | | 35-36 | Introduction
to
Synchronous
machines | Synchronous machines, characteristics; Synchronous reactance & voltage regulation | c.Technology based
Learning | T112.1 -12.2 | | 37-38 | Introduction
to Induction
machines | Induction
machines
constructional
features, circuit
model | c.Technology based
Learning | T1 12.3 | | 39-40 | Characteristics of induction machines, Modeling and performance of induction machines | Torque slip
characteristics of
induction
machine, Tests
for determination
of circuit model
parameters &
starting methods | c.Technology based
Learning | T1 12.3 | Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination. | Evaluation
Component | Duration | Weightage | Date | Syllabus (Lec.No.) | Remarks | |-------------------------|-------------------------|-----------|------------|--------------------|---------| | Test 1 | 60 Minutes | 20 | 18-02-2025 | 1-10 | СВ | | Test 2 | 60 Minutes | 20 | 08-04-2025 | 11-24 | ОВ | | Quiz/Assignment/Lab | Throughout the Semester | 20 | ** | | СВ | | Comprehensive Exam | 3 Hours | 40 | 09-05-2025 | 1- 40 | СВ | ^{**} To be announced in the class CB= Close Book Exam OB= Open Book **Make-up Policy:** Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must. **General:** It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc Date: 07/01/2025 Dr.K NAGAIAH Instructor-in-charge Faculty of Science and Technology Second Semester, 2024-2025 Course Handouts | Course Code | Course Title | L | P | T | U | |-------------|-------------------------|---|---|---|---| | MG201 | Principle of Management | 3 | 0 | 0 | 3 | ## **Instructor-in-charge: Mr.VARUN PANWAR** ## **Learning Outcomes:** - 1. To understand the basic concepts of management and demonstrate the roles, skills, function of a manager - 2. To Describe and analyses the various management theories in contemporary business environment - 3. To develop managerial skills to understand and evaluate the contemporary issues in management | Reference Book R1 | Principles Of Business Management, Dr. N. Mishra, Dr.O.P. Gupta, Sahitya Bhawan Publications | |-------------------|--| | Reference Book R2 | Principles Of Business Management, Dr. SC Saksena, Sahitya
Bhawan Publications | | | L. M. Prasad - Principles and Practice of Management, Sultan Chand | | Lecture
Nos | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning | Reference
(chapter/sec
./Page Nos of
Text/Ref.
Books) | |----------------|----------------------------|---|---|---| | 01-03 | Fundamentals of Management | Meaning, Nature & Significance; Management Vs Administration; Evolution of Management Thought and different approaches to | Group Learning and Teaching | R1, pg 01-24,
Study Materials
and PDF | | Lecture
Nos | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning | Reference
(chapter/sec
./Page Nos of
Text/Ref.
Books) | |----------------|--|--|--|---| | | | Levels of
Management | | | | 04-07 | Key Concepts
in Management
Practice | Elements of managerial Processes; Styles & Roles of Managers in Organizations; Scientific and Operational Management; Behavioral Science Systems and Contingency approaches. | Group Learning and Teaching | R1, pg 25-30,
pg 31-40
Study Materials
and PDF | | 08-09 | Planning: Core
Concepts and
Challenges | Nature &
Significance;
Process of
Planning; Planning
and Environmental
Uncertainties | Group Learning and Teaching | R1, pg 43-48
Study Materials
and PDF | | 10-12 | | Types of Planning;
Advantages and
Limitations of
Planning; Decision
Making- Process of
Decision Making. | Group Learning and
Teaching | R1, pg 48-58, pg 62-66 Study Materials and PDF | | 13 | Internal
Assesment | | | | | 14-16 | Organizing:
Authority,
Responsibility,
and Delegation | Nature & Significance; Authority & Responsibility; Span of Control; | Group Learning and Teaching | R1, pg 103,120
Study Materials
and PDF | | Lecture
Nos | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning | Reference
(chapter/sec
./Page Nos of
Text/Ref.
Books) | |----------------|---|--
--|---| | | | Process of Delegations; Barriers to Delegation | | | | 17-19 | Organizing: Structure and Authority Distribution | Centralization & Decentralization; Concept of Line & Staff organization | Group Learnig and Teaching | R1, pg 129,137
Study Materials
and PDF | | 20-22 | Organization
Structures and
Staffing | Organization Structures-Types, Advantages & Disadvantages; Staffing Concept. | Group Learning and Teaching | R1, pg 148-164
Study Materials
and PDF | | 23-25 | Directing: Guiding and Supervising Teams | Concept & Importance; Direction & Supervision; Role of Supervisor; Techniques of directing | Group Learning and
Teaching | R2, pg 224-232
Study Materials
and PDF | | 26-28 | Coordination:
Integrating
Efforts for
Success | Nature and Scope
of Coordination;
Principles,
Techniques and
Barriers to Co-
ordination | Group Learning and Teaching | R2, pg 267
Study Materials
and PDF | | 29-32 | Presentation | Student Based
Learning | Peer teaching Project Based Learning | | | 33-36 | Controlling:
Ensuring
Performance
and Achieving
Goals | Concept and process; effective control system; Techniques of control. | Group Learning and Teaching | R1, pg 217-240
Study Materials
and PDF | | 37 | Internal
Assesment | | | | | Lecture
Nos | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning | Reference
(chapter/sec
./Page Nos of
Text/Ref.
Books) | |----------------|-----------------------|-------------------------|--|---| | 38-40 | Revision | Revision | | | Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination. | Evaluation
Component | Duration | Weightage | Date | Syllabus (Lec.No.) | Remarks | |-------------------------|-------------------------|-----------|------------|--------------------|---------| | Test 1 | 60 Minutes | 20 | 19-02-2025 | 1-12 | СВ | | Test 2 | 60 Minutes | 20 | 09-04-2025 | 14-26 | ОВ | | Quiz/Assignment/Lab | Throughout the Semester | 20 | ** | ** | СВ | | Comprehensive Exam | 3 Hours | 40 | 14-05-2025 | 1-40 | СВ | ^{**} To be announced in the class CB= Close Book Exam OB= Open Book **Make-up Policy:** Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must. **General:** It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc Date: 07/01/2025 Mr.VARUN PANWAR Instructor-in-charge Faculty of Science and Technology Second Semester, 2024-2025 Course Handouts | Course Code | Course Title | L | P | T | U | |-------------|--------------------|---|---|---|---| | MA303 | Operation Research | 3 | 0 | 0 | 3 | ### **Instructor-in-charge: Mr.HEMANT KUMAR DEWANGAN** ### **Learning Outcomes:** After successful completion of the course student will be able to: - 1. Identify and develop operational research models from the verbal description of the real system. - 2. Understand the mathematical tools that are needed to solve optimization problems. - 3. Use mathematical software to solve the proposed models. - 4. Develop a report that describes the model and the solving technique, analyze the results and propose recommendations in language understandable to the decision-making processes in Management Engineering. - 5. Learn the concepts, models, tools and techniques, to manage operations in manufacturing and service organizations. | Text Book T1 | Sharma, S.D., "Operations Research", Kedar Nath Ram Nath & | | | | | |-------------------|--|--|--|--|--| | | Co. (15th Edition), 2010. | | | | | | Reference Book R1 | Taha, H.A., "Operations Research – An Introduction", Prentice Hall, (7th Edition), 2002. | | | | | | Reference Book R2 | Hillier, F.S., Lieberman, G.J., Nag, B., Basu, P., "Introduction to Operations Research", McGraw Hill (10th Edition), 2017. | | | | | | Reference Book R3 | Operations Management, FedUni | | | | | | Reference Book R4 | Ravindran, A., Phillips, D. T and Solberg, J. J., "Operations Research: Principles and Practice", John Willey and Sons, 2nd Edition, 2009. | | | | | | Reference Book R5 | Operations Management, Lee J Krajweski and Larry P.Ritzman/ Person Education Delhi 6th edition | | | | | | Reference Book R6 | Operations Management, Russel & Taylor, 4th Edition | | | | | | Swayam Link | https://onlinecourses.swayam2.ac.in/cec20_ma10/preview | | | | | | Lecture
No. | Learning
objectives | Topics to be covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Refer to
Chapter,
See (Book) | |----------------|---|---|---|-------------------------------------| | 1 | | Mathematical Formulation of LPP | Peer teaching | T1, Unit-2, ch-3, pg.3-26 | | 2 | | Graphical Method for Solving LPP | Peer teaching | T1, Unit-2,
ch-3, pg.26-
53 | | 3 | Linear
Programming | Simplex Method for
Solving LPP and
Big-M Method | Peer teaching | T1, Unit-2,
ch-5, pg.67-
95 | | 4 | Problem | Some Special Cases in LPP | Peer teaching | T1, Unit-2,
ch-5, pg.95-
125 | | 5 | | Duality, and
Solving LPP using
Duality in Simplex
Method | Peer teaching | T1, Unit-2,
ch-7, pg.158-
203 | | 6 | | Mathematical
Formulation of LPP | Peer teaching | T1, Unit-2,
ch-11,
pg.262-267 | | 7 | Initial BFS of
Transportation
Problem | | Peer teaching | T1, Unit-2,
ch-11,
pg.269-278 | | 8 | Transportation | Optimality Test by
Stepping Stone
Method and, and | Peer teaching | T1, Unit-2,
ch-11,
pg.278-351 | | 9 | | MODI Method | Peer teaching | T1, Unit-2,
ch-11,
pg.278-351 | | 10 | | Some Special Cases
of Transportation
Problem | Peer teaching | T1, Unit-2,
ch-11,
pg.278-351 | | 11 | Assignment | Initial BFS of
Assignment
Problem | Peer teaching | T1, Unit-2,
ch-12,
pg.352-353 | | Lecture
No. | Learning
objectives | Topics to be covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Refer to
Chapter,
See (Book) | |----------------|------------------------|--|---|-------------------------------------| | 12 | | Johnson's job of sequencing rules | Peer teaching | T1, Unit-2,
ch-12,
pg.353-403 | | 13 | | Solution by
Hungarian Method,
and Travelling
Salesman Problem | Peer teaching | T1, Unit-2,
ch-12,
pg.353-403 | | 14 | | Basic Concept and
Terminologies | Peer teaching | T1, Unit-4,
ch-19, pg.3-5 | | 15 | | Two-person Zero-
sum Game, and
Game with Pure
and Mixed
Strategies | Peer teaching | T1, Unit-4,
ch-19, pg.20- | | 16 | Game Theory | Dominance Principle, Arithmetic Method, and Graphical Method for Solving (2× n) Game | Peer teaching | T1, Unit-4,
ch-19, pg.20-
61 | | 17 | | Graphical Method
for Solving (m×2)
Game and Solution
of Game by
Simplex Method | Peer teaching | T1, Unit-4,
ch-19, pg.20-
61 | | 18 | Job Sequencing | Basic
Terminologies and
Assumptions of Job
Sequencing | Peer teaching | T1, Unit-4,
ch-24,
pg.299-300 | | 19 | | Processing of n Jobs through 2 and 3 Machines | Peer teaching | T1, Unit-4,
ch-24,
pg.300-315 | | Lecture
No. | Learning
objectives | Topics to be
covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Refer to
Chapter,
See (Book) | |----------------|------------------------|---|---|-------------------------------------| | 20 | | Processing n Jobs
through m Machine
s, and Processing 2
Jobs
through m Machine
s - Graphical | Peer teaching | T1, Unit-4, ch-24, pg.300-315 | | 21 | | Economic Order
Quantity and EOQ
Models without
Shortage | Peer teaching | T1, Unit-4,
ch-20, pg.62-
71 | | 22 | | EOQ models with
Shortage and EPQ
Models
with/without
Shortages | Peer teaching | T1, Unit-4,
ch-20, pg.72-
100 | | 23 | Inventory Theory | Newsboy Problem
and Probabilistic
Inventory Model
with Instantaneous
Demand and No Set
up Cost | Peer teaching | T1, Unit-4, ch-21, pg.143-172 | | 24 | | Probabilistic Inventory Model with Uniform Demand
and No Set up Cost, and Buffer Stock in Probabilistic Inventory Model | Peer teaching | T1, Unit-4,
ch-21,
pg.143-172 | | 25 | | Problems regarding different models | Peer teaching | T1, Unit-4,
ch-21,
pg.173-175 | | 26 | Queuing Theory | Basic
Characteristics of
Queuing System | Peer teaching | T1, Unit-4,
ch-23,
pg.215-229 | | Lecture
No. | Learning
objectives | Topics to be covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Refer to
Chapter,
See (Book) | |----------------|-------------------------|---|---|-------------------------------------| | | | and Probability Distribution of Arrivals | | | | 27 | | Probability Distribution of Departures and Model I (M M 1):(∞ FCFS) | Peer teaching | T1, Unit-4, ch-23, pg.230-231 | | 28 | | Model I. (General):
(M M 1): (∞ FCFS),
and Model II.
(M M 1): (N FCFS) | Peer teaching | T1, Unit-4, ch-23, pg.232-257 | | 29 | | Model III - $(M M s)$: $(\infty FCFS)$, and Model IV - $(M Ek 1)$: $(\infty FCFS)$ | Peer teaching | T1, Unit-4, ch-23, pg.258-268 | | 30 | | Networking
Modeling | Peer teaching | T1, Unit-4,
ch-25,
pg.316-322 | | 31 | | Critical Path
Method (CPM) | Peer teaching | T1, Unit-4,
ch-25,
pg.323-349 | | 32 | Network Analysi | Program Evaluation & Retention Technique (PERT) | Peer teaching | T1, Unit-4,
ch-25,
pg.349-382 | | 33 | | Project Crashing | Peer teaching | T1, Unit-4,
ch-25,
pg.349-382 | | 34 | | LP and Dual LP
Solutions to
Network Problem | Peer teaching | T1, Unit-4,
ch-25,
pg.349-382 | | 35 | Dynamic Progra
mming | Basic Concept and
Terminology, and
Dynamic | Peer teaching | T1, Unit-5,
ch-33, pg.72-
77 | | Lecture
No. | Learning
objectives | Topics to be covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Refer to
Chapter,
See (Book) | |----------------|---|---|---|------------------------------------| | | | Programming Models I and II | | | | 36 | | DP Model III,
Solution of Discrete
DP Problem and
Solution of LPP by
DP | Peer teaching | T1, Unit-5, ch-33, pg.82 | | 37-38 | Supply Chain
Management | Introduction, Business Drivers in Supply Chain performance | Group Learning and Teaching | R3, ch-16, pg.217-232 | | 39-40 | Just-In-Time (JIT)
Manufacturing
System | Introduction, The
Concept of the JIT
System | Group Learning and Teaching | R3, ch-18, pg.253-261 | Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination. | Evaluation
Component | Duration | Weightage | Date | Syllabus (Lec.No.) | Remarks | |-------------------------|-------------------------|-----------|------------|--------------------|---------| | Test 1 | 60 Minutes | 20 | 17-02-2025 | 1-15 | СВ | | Test 2 | 60 Minutes | 20 | 07-04-2025 | 16-30 | ОВ | | Quiz/Assignment/Lab | Throughout the Semester | 20 | ** | | СВ | | Comprehensive Exam | 3 Hours | 40 | 05-05-2025 | 1- 40 | СВ | ^{**} To be announced in the class CB= Close Book Exam OB= Open Book | Make-up | Policy: | Make – | up wil | l be | given | only | under | genuine | circumsta | ances | for | Tests | Only. | |---------|----------------|--------|--------|------|--------|------|-------|-----------|------------|-------|-----|-------|-------| | However | prior and | proper | intima | tion | to the | conc | erned | instructo | r is must. | | | | | General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc Date: 07/01/2025 Mr.HEMANT KUMAR DEWANGAN Instructor-in-charge Faculty of Science and Technology Second Semester, 2024-2025 Course Handouts | Course Code | Course Title | L | P | T | U | |-------------|------------------|---|---|---|---| | CS314 | Operating System | 3 | 0 | 0 | 3 | ## **Instructor-in-charge: Mr.ASHISH KUMBHARE** ## **Learning Outcome -** - 1. To understand the basic concepts and functions of operating systems. - 2. To understand Processes and Threads - 3. To analyze Scheduling algorithms. - 4. To understand the concept of Deadlocks. - 5. To analyze various memory management schemes. - 6. To understand I/O management and File systems. | Text Book T1 | Operating Systems Conepts, Silbverschatz, A and Galvin, P.B 7 th Edition, Addison, Wesley, 1998 | |-------------------|--| | Text Book T2 | Operating Systems- A Concept bases approach, Dhamdhere D.M | | Reference Book R1 | Operating Systems, Stallings W, 4th edition, PHI, 2001. | | Reference Book R2 | The Design of Unix Operating System, Bach | | Reference Book R3 | Modern Operating Systems, Tanenbaum, A.S PHI 1996 | | NPTEL | https://nptel.ac.in/courses/106/105/106105214/ | | Lecture
Nos. | Learning
Objective | Topics to
be covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference
(Ch./Sec./
Page Nos.
of Text
Book) | |-----------------|---------------------------------|-------------------------|---|--| | 1 | To understand what is operating | Overview | c. Technology based
Learning | T1 CH-1 | | 2 | system and its functions | Types of OS | c. Technology based
Learning | T1 CH-1 | | Lecture
Nos. | Learning
Objective | Topics to be covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference
(Ch./Sec./
Page Nos.
of Text
Book) | |-----------------|------------------------------------|---|---|--| | 3 | | Design
Approaches | c. Technology based
Learning | T1 CH-1 | | 4 | | System call,
context
switching | c. Technology based
Learning | T1 CH-2 | | 5 | | System design implementation | c. Technology based
Learning | T1 CH-3 | | 6 | | Process
overview(State,
PCB) | c. Technology based
Learning | T1 CH-4 | | 7-8 | To understand the concept of | Process
Scheduling | c. Technology based
Learning | T1 CH-4 | | 9 | process and its various states | Threads | c. Technology based
Learning | T1 CH-5 | | 10 | | Inter Process
Communication
(IPC) | c. Technology based
Learning | T1 CH-5 | | 11 | To know what is | CPU Scheduling
Overview | d. Peer teaching | T1 CH-6 | | 12-13 | scheduling and its importance | Scheduling
Algorithms | d. Peer teaching | T1 CH-6 | | 14 | To understand | Critical Section
Problem | c. Technology based
Learning | T1 CH-7 | | 15 | the problem of
Critical Section | Multi Process
Solution | c. Technology based
Learning | T1 CH-7 | | 16 | and its solution | Semaphores | c. Technology based
Learning | T1 CH-7 | | Lecture
Nos. | Learning
Objective | Topics to
be covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference
(Ch./Sec./
Page Nos.
of Text
Book) | |-----------------|---|---------------------------------------|--|--| | 17 | | Classical Problems of Synchronization | c. Technology based
Learning | T1 CH-7 | | 18-20 | To know what is deadlock and its handling | Deadlock
Handling | c. Technology based
Learning | T1 CH-8 | | 21 | | Memory
Management
Overview | c. Technology based
Learning | T1 CH-9 | | 22-23 | | Paging | c. Technology based
Learning | T1 CH-9 | | 24 | | Segmentation | c. Technology based
Learning | T1 CH-9 | | 25 | To understand various memory | Segmentation with Paging | c. Technology based
Learning | T1 CH-9 | | 26 | management
schemes and
their relative | Virtual Memory | c. Technology based
Learning | T1 CH-10 | | 27 | advantages and disadvantages | Demand Paging | c. Technology based
Learning | T1 CH-10 | | 28 | | Page
Replacement | c. Technology based
Learning | T1 CH-10 | | 29 | | Page
Replacement
Algorithms | c. Technology based
Learning | T1 CH-10 | | 30 | | Thrashing | c. Technology based
Learning | T1 CH-10 | | 31 | To understand the concept of | File Operations | c. Technology based
Learning | T1 CH-11 | | Lecture
Nos. | Learning
Objective | Topics to
be covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer
teaching e. Project based Learning. | Reference
(Ch./Sec./
Page Nos.
of Text
Book) | |-----------------|---|--------------------------|--|--| | 32 | files, its types,
attributes and
operations | Directory
Structure | c. Technology based
Learning | T1 CH-11 | | 33 | | File-System
Structure | c. Technology based
Learning | T1 CH-12 | | 34 | | Allocation
Methods | c. Technology based
Learning | T1 CH-12 | | 35-39 | | I/O Systems | c. Technology based
Learning | T1 CH-12 | | 40 | | Disk Scheduling | d. Peer teaching | T1 CH-13 | Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination. | Evaluation
Component | Duration | Weightage | Date | Syllabus (Lec.No.) | Remarks | |-------------------------|-------------------------|-----------|------------|--------------------|---------| | Test 1 | 60 Minutes | 20 | 17-02-2025 | 1-15 | СВ | | Test 2 | 60 Minutes | 20 | 07-04-2025 | 16-25 | ОВ | | Quiz/Assignment/Lab | Throughout the Semester | 20 | ** | ** | СВ | | Comprehensive Exam | 3 Hours | 40 | 01-05-2025 | 1-40 | СВ | ^{**} To be announced in the class CB= Close Book Exam OB= Open Book **Make-up Policy:** Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must. **General:** It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc Date: 03/01/2025 Mr.ASHISH KUMBHARE Instructor-in-charge Faculty of Science and Technology Second Semester, 2024-2025 Course Handouts | Course Code | Course Title | | P | T | U | |-------------|-----------------------------|---|---|---|---| | CS315 | Database Management Systems | 3 | 2 | 0 | 4 | ## Instructor-in-charge: Mr.NAVEEN KUMAR VAISHNAV ### **Scope & Objective of the Course:** After successful completion of the course student will be able to: - 1. To understand the core concepts of database systems, including relational databases, data models, and schema design. - 2. To learn how to effectively use SQL for querying, updating, and managing databases. - 3. To understand the principles of database design, including normalization and ER modelling. - 4. To gain knowledge of transaction management, concurrency control, and recovery techniques. - 5. To develop the ability to design and implement database systems that meet real-world application needs. | Textbook T1 | Database System Concepts, Silberschatz A, Korth HF, and Sudarshan S, TMH,2002 | |-------------------|--| | Reference book R1 | Database Management Systems, Ramakrishna R.& Gehrke J, 3 rd Edition, Mc-GrawHill,2002 | | Reference Book R2 | Database Systems-The Complete book, HectorG Molina, Jeffrey D. Ullmanand Jennifer Widom, Pearson Education, 2002 | | NPTEL | https://nptel.ac.in/courses/106/105/106105175/ | | SWAYAM | https://onlinecourses.swayam2.ac.in/cec19_cs05/preview | | Lecture
Nos. | Learning
Objective | Topics to be
Covered | Teaching learning Strategies a. Group Learning and Teachig b. Game Based Learning c. Technology Based Learning d. Peer Teaching e. Project Based Learning | Reference
(chapter/sec
./Page No.s of
Text/Ref.
Books) | |-----------------|--|--|---|--| | 1-3 | Introduction to
Database
Systems | Course overview, Overview of modern DBMS, Database Architecture | Peer Teaching | T1: 1.1-1.13 | | 4-8 | About
Database | Data Independence,
Data Dictionary, Types
of Database Users,
Types of Keys,
Distributed Database | Group Learning and Teaching | T1: 2.1-2.13 | | 8-11 | Data modeling | Data Models, Basic
elements of ER model,
Attributes, Types of
Relationship | Peer Teaching | T1: 7.1-7.10 | | 12-16 | Introduction to SQL constructs | SQL, Data types, DDL & DML Commands | Technology based Learning | T1: 3.1-3.9 | | 17-19 | Types of
Operators and
Functions | In, Between, Like,
Aggregate Functions | Technology based Learning | T1: 5.1 | | Lecture
Nos. | Learning
Objective | Topics to be
Covered | Teaching learning Strategies a. Group Learning and Teachig b. Game Based Learning c. Technology Based Learning d. Peer Teaching e. Project Based Learning | Reference
(chapter/sec
./Page No.s of
Text/Ref.
Books) | |-----------------|---|--|---|--| | 20-25 | Understanding
additional
SQL structures | Use Temporary | Technology based Learning | T1: 4.1-4.5 | | 26-30 | & | Functional
dependencies,
Anomalies, Normal
Forms: 1NF,2NF, 3NF,
BCNF, Multi-valued
dependencies:4NF,5NF | Peer Teaching | T1: 8.1-8.9 | | 31-33 | Formal Query
Languages | Relational algebra operators, Relational algebra queries | Peer Teaching | T1: 616.4 | | 34-35 | Integrity constraints | Integrity constraints: Not null, unique, check, primary key, foreign key, references, Triggers | Technology based Learning | T1: 4.4-4.5 | | 36-38 | Understand
Database
connectivity | Connectivity to the database, designing and implementation | Technology based Learning | T1: 12.1-12.8 | | Lecture
Nos. | Learning
Objective | Topics to be
Covered | Teaching learning Strategies a. Group Learning and Teachig b. Game Based Learning c. Technology Based Learning d. Peer Teaching e. Project Based Learning | Reference
(chapter/sec
./Page No.s of
Text/Ref.
Books) | |-----------------|------------------------|--|---|--| | 39 - 40 | Latest
Technologies | Introduction to
Hadoop, Big-Data,
Data warehouse | Technology based Learning | T1: 14.1-
14.10 | Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination. | Evaluation
Component | Duration | Weightage | Date | Syllabus (Lec.No.) | Remarks | |-------------------------|-------------------------|-----------|------------|--------------------|---------| | Test 1 | 60 Minutes | 20 | 19-02-2025 | 1-16 | СВ | | Test 2 | 60 Minutes | 20 | 09-04-2025 | 17-29 | ОВ | | Quiz/Assignment/Lab | Throughout the Semester | 20 | ** | ** | СВ | | Comprehensive Exam | 3 Hours | 40 | 12-05-2025 | 1-40 | СВ | ^{**} To be announced in the class CB= Close Book Exam OB= Open Book **Make-up Policy:** Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must. **General:** It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc Date: 07/01/2025 Mr.NAVEEN KUMAR VAISHNAV Instructor-in-charge Faculty of Science and Technology Second Semester, 2024-2025 Course Handouts | Course Code | Course Title | L | P | T | U | |-------------|----------------|---|---|---|---| | CS225 | Web Technology | 3 | 2 | 0 | 4 | **Instructor-in-charge: Mr.NAVEEN KUMAR VAISHNAV** ### **Scope & Objective of the Course:** After successful completion of the course student will be able to: - 1. Understand Web Fundamentals: Learn the architecture of the web, including clientserver interactions and HTTP. - 2. Proficiency in HTML & CSS: Build structured web pages with HTML and style them using CSS for responsive design. - 3. Dynamic Web Pages with JavaScript: Implement interactivity, form validation, and DOM manipulation using JavaScript. - 4. Server-side Programming with PHP: Create dynamic websites, connect to databases, and manage sessions using PHP. - 5. Build Full Web Applications: Combine front-end and back-end skills to create and deploy complete web applications. - 6. Emphasize Web Standards: Focus on accessibility, SEO, web performance, and cross-browser compatibility. | Text Book T1 | Deitel, Deitel, Goldberg, "Internet & World Wide Web How to Program", Third Edition, Pearson Education, 2006. | |-------------------|--| | Reference book R1 | Achyut Godbole, Atul Kahate "Web Technologies: TCP/IP, Web/Java Programming, and Cloud Computing", Third Edition, McGraw Hill Education. | | Reference Book R2 | Raj Kamal, "Internet and Web Technologies", Tata McGraw-Hill. 4. | | NPTEL | https://nptel.ac.in/courses/106/105/106105084/ | | SWAYAM | https://onlinecourses.swayam2.ac.in/nou20_cs05/preview | | Lecture | Learning
Objective | Topics to be
Covered | Teaching learning Strategies a. Group Learning and Teaching b. Game Based Learning c. Technology Based Learning d.
Peer Teaching e. Project Based Learning | Reference
(Chapters) | |---------|--|--|---|-------------------------| | 1-2 | Internet
Concept: | Fundamental of
Web, History of
Web, Web
development
overview, Domain
Name System
(DNS) | Peer Teaching | T1: 1.5-1.6 | | 3-4 | Functionality of
Internet | DHCP and SMTP
and other servers,
Internet service
provider (ISP),
Concept of IP
Address, | Peer Teaching | T1: 1.8, 2.1 | | 5-6 | Protocols and
Components of
internet | Internet Protocol,
TCP/IP
Architecture, Web
Browser and Web
Server. | Peer Teaching | T1: 2.1, 2.7 | | 7-10 | HTML and DHTML | HTML Tag, Rules
of HTML, Text
Formatting and
Style, List, Image,
Hyperlinks | Technology based
Learning | T1: 4.1- 4.9 | | 11-15 | HTML Tables and Frames | Tables and Layout,
Linking
Documents, Frame,
Forms, Project in
HTML | Technology based
Learning | T1: 4.10 -
4.11 | | 16-20 | DHTML &
CSS | Introduction to
DHTML, CSS,
Class and DIV,
External Style
Sheet. | Technology based Learning. | T1: 5.1 - 5.8 | | Lecture | Learning
Objective | Topics to be
Covered | Teaching learning Strategies a. Group Learning and Teaching b. Game Based Learning c. Technology Based Learning d. Peer Teaching e. Project Based Learning | Reference
(Chapters) | |---------|--------------------------|---|---|--| | 21-24 | Java Script | JavaScript (JS) in
Web Page,
Advantage of Java
Script, JS object
model and
hierarchy | Technology based
Learning. | T1: 6.1 – 6.5 | | 25-28 | Java Script
Functions | JS Function, Client-
side JS Vs. Server-
side JS, JS security | Technology based Learning. | T1: 9.1 –
9.11 | | 29-33 | РНР | PHP Syntax, Variables, Data Types, Strings, Constants, Operators, Control structure, Functions, Array, PHP Forms, Forms Handling | Technology based Learning. | R1: 8.1- 8.6 | | 34-38 | PHP
Connectivity | Working with PHP and MySQL, Connecting to Database, Creating, Selecting, Deleting, Updating Records in a table, Inserting Multiple Data | Technology based
Learning. | R1: 8.7- 8.9 | | 39-40 | Latest
Technologies | Introduction to
CodeIgniter,
Laravel, Word
press etc. | Peer Teaching | Refer Internet & Follow Instructor in Charge | Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination. | Evaluation
Component | Duration | Weightage | Date | Syllabus (Lec.No.) | Remarks | |-------------------------|------------|-----------|------------|--------------------|---------| | Test 1 | 60 Minutes | 20 | 18-02-2025 | 1-20 | СВ | | Test 2 | 60 Minutes | 20 | 08-04-2025 | 21-40 | ОВ | | Quiz/Assignment/Lab | 2 Hours | 20 | ** | | СВ | | Comprehensive Exam | 3 Hours | 40 | 07-05-2025 | 1- 40 | СВ | ^{**} To be announced in the class CB= Close Book Exam OB= Open Book **Make-up Policy:** Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must. **General:** It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc Date: 07/01/2025 Mr.NAVEEN KUMAR VAISHNAV Instructor-in-charge Faculty of Science and Technology Second Semester, 2024-2025 Course Handouts | Course Code | Course Title | L | P | T | U | |-------------|-------------------------------|---|---|---|---| | MKE641 | Digital Service and Marketing | 3 | 0 | 0 | 3 | Instructor-in-charge: Dr.B RAVI KIRAN ### **Learning Outcomes:** After the successful completion of the course, the student shall be able to: - 1. Understand digital marketing, importance there of, meaning of web site and levels of website, difference between blog, portal and website. - 2. Understand the working of SEO (Search engine optimization) on page optimization, off page optimization, and will learn to prepare reports - 3. Learn about SMO (Social media optimization) like Face book, twitter, Linkedin, Tumbir, Printerest and other social media services optimization. - 4. Understand paid tools like google ad words, display advertising techiques - 5. Learn and apply hands on experience on tools useful to SEO for analysis on website traffic, keyword analysis and learn email marketing and ad designing. | Textbook (s)
T1 | Ahuja Vandana Digital Marketing, Oxford University press (2016) ISBN:9780199455447 Sainy Romi, Nargundkar Rajendra Digital Marketing: cases from India, Notion Press (2018) ISBN 9781644291931, 1644291932 | |--------------------------------------|--| | Reference book (s)
R1 | Stephanie Daimond, Author of Facebook Marketing for Dummies, a Wiley brand | | Suggested equivalent online courses: | https://onlinecourses.swayam2.ac.in | | Lecture
Nos. | Learning objectives | Topics to be covered | Reference
(Ch./Sec./
Page Nos. of
Text Book) | |-----------------|--|--|---| | 1-10 | Learn about the Basics digital marketing | Meaning of Digital Marketing, Differences from Traditional Marketing, Returns of Investments on Digital Marketing vs. Traditional Marketing, E Commerce, tools used for successful marketing, SWOT Analysis of Business for Digital Marketing, Meaning | T1 | | Lecture
Nos. | Learning objectives | Topics to be covered | Reference
(Ch./Sec./
Page Nos. of
Text Book) | |-----------------|---|---|---| | | | of Blogs, Websites, Portal
and their differences,
Visibility, Visitor,
Engagement, conversion
process, Retention,
Performance Evaluation. | | | 11-20 | Learn about the SEO | Search Engine Optimization (SEO):On page optimization techniques, off page optimization Techniques, Preparing Reports, Creating search Campaigns, Creating Display Campaigns. | T2 | | 21-30 | | Social Media Optimization (SMO):Introduction to Social Media Marketing, Advanced Facebook Marketing, Word press Blog Creation, Twitter Marketing, LinkedIn Marketing, Instagram Marketing, social media Analytical Tools. | T1 | | 31-35 | Learn about the SMO,
SEM and Traffic
Analysis | Search engine Marketing:Meaning and Use of Search Engine Marketing, Tools used-Pay Per Click, Google Ad words, Display Advertising Techniques, Report Generation | T1 | | 36-42 | | Website Traffic Analysis, Affiliate Marketing and Ad Designing:Google Analytics, Online Reputation Management, Email Marketing, Affiliate Marketing, Understanding Ad Words Algorithm, Advertisement Designing | T2 | Student evaluation is based on the series of Tests and Quizes conducted during the course of semester followed by a comprehensive examination. | Evaluation
Component | Duration | Weightage | Date | Syllabus (Lec.No.) | Remarks | |-------------------------|------------|-----------|------------|--------------------|---------| | Test 1 | 60 Minutes | 20 | 17-02-2025 | 1-10 | СВ | | Test 2 | 60 Minutes | 20 | 07-04-2025 | 11- 24 | OB | | Presentations/Lab | Continuous | 20 | ** | ** | ** | | Comprehensive
Exam | 3 Hours | 40 | 01-05-2025 | 1- 42 | СВ | ^{**} To be announced OB=Open Book Exam CB=Closed Book Exam **Make-up Policy:** Make up will be given only under genuine circumstances for Tests only. However prior and proper intimation to the concerned instructor is must. **General:** It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examination, etc. Date: 09/01/2025 Dr.B RAVI KIRAN Instructor-in-charge Faculty of Science and Technology Second Semester, 2024-2025 Course Handouts | Course Code | Course Title | L | P | T | U | |-------------|---|---|---|---|---| | CS223 | Discrete Structures for Computer Science | 3 | 0 | 0 | 3 | ## Instructor-in-charge: Dr.ANIMESH KUMAR SHARAMA ## **Learning Outcomes:** After successful completion of the course student will be able to - 1. Discrete mathematics is the study of discrete sets. - 2. Material usually includes Logic, Graph Theory & Boolean Algebra. - 3. Mathematical Induction and method of proofs - 4. Algebraic Structures and related concepts - **5.** Language and Grammars | Text Book T1 | Discrete Mathematical Structures, Kolman, Busby & Ross: PHI, 5th Edition, 2006. | |-------------------|---| | Reference Book R1 | A Textbook of
Discrete Mathematics, 9th Edition S.Chand Company Ltd. Dr. Swapan Kumar Sarkar, 9 th Edition, 2021 | | Reference Book R2 | Elements of Discrete Maths, C.L. Liu: Tata McGraw Hill, 2nd edition,2001. | | Reference Book R3 | Discrete Mathematics for Computer Science, Gary Haggard & John Schlipf, Cengage, Thomson 2006. | | Lecture
Nos. | Learning
Objective | Topics to be
covered | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology Based Learning d. Peer Teaching e. Project Based Learning | Reference
(Ch./Sec.
/ Page Nos.of
Text Book) | |-----------------|---|---|--|---| | 1- 4 | To understand mathematical structures and operations. | Basic Concept of
Mathematical
Logic ,Proposition
or Statement
logical operations
or connectives, | Peer teaching | 1.2,1.3,1.5,1.6 | | Lecture
Nos. | Learning
Objective | Topics to be
covered | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology Based Learning d. Peer Teaching e. Project Based Learning | Reference
(Ch./Sec.
/ Page Nos.of
Text Book) | |-----------------|---|--|--|---| | | | Conditional and Bi-
Conditional
Statements, Logical
Equivalence, Set
Theory, Types of
Sets, Operations on
Sets . | | | | 5-7 | To understand the logical representations. | Quantifiers,
Negation of
Quantifiers, | Peer teaching | Ch. 2 | | 8-11 | To learn about
Boolean
Algebra. | Boolean Algebra,
Absorption Law,
De-Morgan's Law,
Boolean Function
Expressions, CNF,
DNF Forms | Peer teaching | 6.4, 6.5 | | 12-15 | To learn the principles used in the analysis of Algorithms. | Methods of Proof ,
Mathematical
Induction | Peer teaching | 3.3, 3.5 | | 16-19 | To learn the geometric and algebraic methods of representing objects. | Graphs, Isomorphic
Graphs, Subgraphs,
Operation on
Graphs, Euler
Paths & Circuits,
Hamiltonian Paths
& Circuits | Peer teaching | 8.1-8.3 | | 20-22 | To learn the theoretical and Computational aspects of discrete | Directed Graphs, Paths in relations & directed graphs, Relations, Equivalence | Peer teaching | Ch. 4 | | Lecture
Nos. | Objective | Topics to be
covered | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology Based Learning d. Peer Teaching e. Project Based Learning | Reference
(Ch./Sec.
/ Page Nos.of
Text Book) | |-----------------|--|--|--|---| | | structures of relations. | relation & partitions | | | | 23-25 | To learn about
the construction
of trees and its
flows. | Trees & their representations labeled trees | Peer teaching | 7.1,7.2 | | 26-29 | To learn
Special Kind of
Trees and their
properties | Spanning trees,
Minimal Spanning
Trees, Algorithms
for minimal
spanning tree in
Graph | Peer teaching | 7.4, 7.5 | | 30-33 | To learn about
Algebraic
Structure | Definition of group
& semi group,
General Properties
of Groups, Cyclic
Groups | | 9.2,9.4 | | 34-35 | To learn the construction of language compilers. | Introduction,
Strings, Languages
, Regular
Expressions, | Peer teaching | 10.1,10.3,10.4 | | 36-37 | To understand phrase structure grammars. | type-3 grammars | Peer teaching | R1 | | 38-40 | To study finite state machines. | Finite State Machine (FSM), Problems based upon language and FSM | Peer teaching | R1 | Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination. | Evaluation
Component | Duration | Weightage | Date | Syllabus (Lec.No.) | Remarks | |-------------------------|-------------------------|-----------|------------|--------------------|---------| | Test 1 | 60 Minutes | 20 | 19-02-2025 | 1-19 | СВ | | Test 2 | 60 Minutes | 20 | 09-04-2025 | 20-32 | ОВ | | Quiz/Assignment/Lab | Throughout the Semester | 20 | ** | ** | СВ | | Comprehensive Exam | 3 Hours | 40 | 08-05-2025 | 1-40 | СВ | ^{**} To be announced in the class CB= Close Book Exam OB= Open Book **Make-up Policy:** Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must. **General:** It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc Date: 10/01/2025 Dr.ANIMESH KUMAR SHARMA Instructor-in-charge Faculty of Science and Technology Second Semester, 2024-2025 Course Handouts | Course Code | Course Title | L | P | T | U | |-------------|----------------------------|---|---|---|---| | CS324 | Dot Net and C# Programming | 3 | 2 | 0 | 4 | #### **Instructor-in-charge: Dr.RAMESH KUMAR YADAV** #### **Learning Outcomes:** The Learning objectives of this course are to: - 1. Gain a thorough understanding of the philosophy and architecture of Web applications using C# NET - 2. Acquire a working knowledge of Web application development using Web Forms and Visual Studio 2019 - 3. Optimize an C# NET Web application using configratuation, Security, and Caching - 4. Access databases using ADO.NET and LINQ - 5. More recent C# .NET features - 6. Implement rich client applications using C#.NET AJAX - 7. Customize Web applications through the use of HTTP handlers and modules | Text Book T1 | C# 6.0 and the .NET 4.6 Framework by Andrew Troelsen and Philip Japikse | |----------------------|---| | Text Book T2 | Programming Entity Framework by Julia Lerman | | Reference Book
R1 | Pro ASP.Net MVC 5 (Expert's Voice in ASP.Net)by Adam Freeman | | Lecture
Nos. | Learning
Objective | Topics to be
covered | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference
(chapter/sec.
/Page Nos of
Text/Ref. Books) | |-----------------|--|-------------------------|--|--| | 1-5 | To understand
the basics of
.NET | • NH.I | a. Group Learning and
Teaching. | T l Ch-l 1.4,1.5,
T2,Ch1.6,1.9 | | Lecture
Nos. | Learning
Objective | Topics to be covered | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference
(chapter/sec.
/Page Nos of
Text/Ref. Books) | |-----------------|---|---|--|--| | | | A .NET Testbed for C# Programming Visual Studio | | | | 6-10 | To learn the concepts of web form architecture | IPAGA L TACC | | T2 Ch-2
2.1,2.4,2.7,2.9 | | | C# Overview
for the
Sophisticated
Programmer | C# .NET • First C# Console Application • Namespaces • Data Types • Conversions • Control Structures • Subroutines and Functions • Parameter Passing • Strings • Arrays | | T1 Ch-3 3.1,3.7
T2 Ch3 5.6,3.8 | | 1 71-73 | Object-
Oriented
Programming
in C# | C# .NET | | T1 Ch-4 4.7, 4.4
T2 Ch4 4.8,4.10 | | Lecture
Nos. | Learning
Objective | Topics to be covered | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference
(chapter/sec.
/Page Nos of
Text/Ref. Books) | |-----------------|-------------------------------------|---|--|--| | | | Overriding
MethodsAbstract
Classes | | | | 24-25 | C# and the
.NET
Framework | Components Interfaces System.Object .NET and
COM | reaching | T1 Ch-5 5.5,5.9 | | 26-30 | Introduction
to Windows
Forms | | a. Group Learning and
Teaching | T2 Ch-5 5.3,5.7 | | 31-40 | Using Visual
Studio |
Visual Studio | b. Technology based Learning. | T1 Ch-5,Ch6
5.7, 6.4,7.2
T2 Ch6
6.9,7.4,7.9 | Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination. | Evaluation
Component | Duration | Weightage | Date | Syllabus (Lec.No.) | Remarks | |-------------------------|-------------------------|-----------|------------|--------------------|---------| | Test 1 | 60 Minutes | 20 | 18-02-2025 | 1-20 | СВ | | Test 2 | 60 Minutes | 20 | 08-04-2025 | 21-35 | ОВ | | Quiz/Assignment/Lab | Throughout the Semester | 20 | ** | | СВ | | Comprehensive Exam | 3 Hours | 40 | 07-05-2025 | 1- 40 | СВ | ^{**} To be announced in the class CB= Close Book Exam OB= Open Book **Make-up Policy:** Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must. **General:** It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc Date: 10/01/2025 Dr.RAMESH KUMAR YADAV Instructor-in-charge Faculty of Science and Technology Second Semester, 2024-2025 Course Handouts | Course Code | Course Title | L | P | T | U | |-------------|----------------------|---|---|---|---| | CS325 | Software Engineering | 3 | 0 | 0 | 3 | ### **Instructor-in-charge: Dr.RAMESH KUMAR YADAV** ### **Learning Objectives:** - 1. Students will learn to apply fundamental software engineering concepts, design, analysis and testing methodologies while incorporating the software engineering quality metrics to produce high quality correct software in a scheduled amount of time - 2. Students will learn object oriented methodologies for proving programs are correct and methods of testing programs to demonstrate correctness - 3. Students will learn to use the unified Modelling Language UML programming to achieve | Text Book T1 | Software Engineering: A Practitioner's approach, Pressman R.S, MGHISE, 6th Edition, 2005. | |-------------------|--| | Reference Book R1 | Object Oriented Technology , Tsang, THM, 2006. | | Reference Book R2 | Larmen C, Aplying UML and Patterns: An Introduction to Object Oriented analysis and Design and the Unified process, Pearson Education 2nd Edition, 2004. | | Reference Book R3 | Pankaj Jalote, An Integrated approach to Software Engineering,
Narosa Publishing House, 3rd Edition, 2004. | | Lecture
Nos. | Learning
Objective | Topics to be
Covered | b. Game Based Learning c. Technology based | Reference
(Ch./Sec./ Page
Nos.of Text
Book) | |-----------------|--|-------------------------|--|--| | 1-2 | Key concepts,
software
characteristics | Introduction | a. Group Learning and Teaching. | Chapter 1 (T1) | | Lecture
Nos. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference
(Ch./Sec./ Page
Nos.of Text
Book) | |-----------------|--|-------------------------------------|---|--| | 3-4 | Generic
framework
activities,
agility | Generic View of
Process | b. Technology based
Learning. | Chapter 2 (T1) | | 5-7 | Perspective
models, RAD,
spiral model | Process models | a. Group Learning and
Teaching | Chapter 3 (T1) | | 8-9 | Philosophy & a set of guidelines | An agile view of process | | Chapter 4 (T1) | | 10-12 | Practice
encompasses
the technical
activities | Software
Engineering
Practice | a. Group Learning and
Teaching | Chapter 5 (T1) | | 13-15 | It provides with a solid approach for addressing requirements challenges | Requirements
Engineering | a. Group Learning and
Teaching | Chapter 7 (T1) | | 16-18 | Diagrammatic forms, provides view of one or more model elements | Analysis Modeling | b. Technology based
Learning. | Chapter 8 (T1 & R1) | | Lecture
Nos. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference
(Ch./Sec./ Page
Nos.of Text
Book) | |-----------------|---|--|---|--| | 19-21 | Design is the place where software quality is established | Design
Engineering | a. Group Learning and
Teaching | Chapter 9 (T1 & R1) | | 22-25 | The preliminary blue print from which software is constructed | Architectural
Engineering | b. Technology based
Learning.
a. Group Learning and
Teaching | Chapter 10 (T1 & R1) | | 26-28 | Design guide
lines for
avoiding
errorsas
procedural
design evolves | Component level
Design | b. Technology based Learning. a. Group Learning and Teaching | Chapter 11 (T1 & R1) | | 29-31 | User scenarios
will be created
andscreen
layouts will be
developed | User Interface
Design | a. Group Learning and
Teaching | Chapter 12 (T1 & R1) | | 32-34 | Different
strategies
fortesting
software. | Testing Strategies | a. Group Learning and Teaching. | Chapter 13
(T1&R1) | | 35-37 | Software
Maintenance | Characteristics of
Software
management,
types of
maintenance,
Software reverse
Engineering | b. Technology based
Learning. | Chapter 13 (T1) | | Lecture
Nos. | Learning
Objective | Topics to be
Covered | b. Game Based Learning C. Technology based | Reference
(Ch./Sec./ Page
Nos.of Text
Book) | |-----------------|-----------------------|---|--|--| | 38-40 | Estimation | Estimation of
Maintenance Cost.
Emerging trends
and various tools. | a. Group Learning and Teaching | Chapter 13 (T1&R1) | Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination. | Evaluation
Component | Duration | Weightage | Date | Syllabus (Lec.No.) | Remarks | |-------------------------|-------------------------|-----------|------------|--------------------|---------| | Test 1 | 60 Minutes | 20 | 18-05-2025 | 1-20 | СВ | | Test 2 | 60 Minutes | 20 | 08-04-2025 | 21-35 | ОВ | | Quiz/Assignment/Lab | Throughout the Semester | 20 | ** | 25-40 | СВ | | Comprehensive Exam | 3 Hours | 40 | 09-05-2025 | 1-40 | СВ | ^{**} To be announced in the class CB= Close Book Exam OB= Open Book **Make-up Policy:** Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must. **General:** It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc Date: 07/01/2025 Dr.RAMESH KUMAR YADAV Instructor-in-charge Faculty of Science and Technology Second Semester, 2024-2025 Course Handouts | Course Code | Course Title | L | P | T | U | |-------------|-----------------------|---|---|---|---| | CS327 | Theory of Computation | 3 | 0 | 0 | 3 | ## **Instructor-in-charge: Dr.PALAK KESHWANI** ### **Learning Outcomes:** The Learning objectives of this course are to: - 1. Introduce students to the mathematical foundations of computation including automata theory; the theory of formal languages and grammars the notions of algorithm, decidability, complexity, and computability. - 2. Enhance/ Develop students ability to understand and conduct mathematical proofs for computation and algorithms | | Introduction to Automata Theory Languages, and Computation, by | | | |-------------------|--|--|--| | Text Book T1 | J.E.Hopcroft, | | | | | R.Motwani & J.D.Ullman (3rd Edition) – Pearson Education | | | | | Theory of Computer Science (Automata Language & | | | | Text Book T2 | Computations), by | | | | | K.L.Mishra& N. Chandrashekhar, PHI | | | | | Sipser, M. (2006). <i>Introduction to the Theory of Computation</i> (2 nd | | | | Reference Book R1 | ed.). Boston, MA: | | | | | Thompson Course Technology. | | | | Lecture
Nos. | Learning
Objective | Topics to be
Covered | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference
(chapter/sec.
/Page Nos
of Text/Ref.
Books) | |-----------------|---|---|--|---| | 1-5 | To
understand
the basics of
Automata
| Introduction to automata theory, Examples of automata machine, Finite automata as a language acceptor and | a. Group Learning and Teaching | T 1 Ch-3 | | Lecture
Nos. | Learning
Objective | Topics to be
Covered | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference
(chapter/sec.
/Page Nos
of Text/Ref.
Books) | |-----------------|---|---|--|---| | | | translator. Deterministic finite automata. Non deterministic finite automata, | | | | 6-10 | Conversion | Conversion of NFA to
DFA Minimizing
number of states of a
DFA, Mealy Machine,
Moore machine | a. Group Learning and
Teaching | T2 Ch-3 | | 11-15 | Regular-
Expression | Regular Expressions,
Properties of Regular
Expression. Finite
automata and Regular
expressions. Regular
Expression to DFA
conversion & vice
versa. | a. Group Learning and Teaching | T1 Ch-3
T2 Ch3 | | 16-20 | Pumping
Lemma for
Regular
grammars | Pumping lemma for
regularsets. Application
of pumping lemma,
Regular sets and
Regular grammar | a. Group Learning and
Teaching | T1 Ch-5 | | 21-25 | Types of grammar | Definition and types of
grammar. Chomsky
hierarchy of grammar.
Relation between
types of grammars | a. Group Learning and Teaching | T1, Ch-4 | | 26-28 | Context free grammar | Context free grammar.
Left most linear &right
mostderivation trees.
Ambiguity in
grammar. | a. Group Learning and Teaching | T1 Ch-4
T2 Ch-4 | | 29-30 | Simplification of grammar | Simplification of context free grammar. Chomsky normal from. | a. Group Learning and Teaching | T1,Ch-6 | | Lecture
Nos. | Learning
Objective | Topics to be
Covered | Teaching learning strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference
(chapter/sec.
/Page Nos
of Text/Ref.
Books) | |-----------------|-------------------------|---|--|---| | 31-34 | Context Free
Grammar | Pumping lemma
fromcontext
freelanguage.Decision
algorithm for context
tree language. | a. Group Learning and Teaching | T1 Ch-7 | | 35-40 | Pushdown
automata | Pushdown automata, Deterministic pushdownautomata and non deterministic push down automata. Acceptance of push down automata. Push downautomata and context free language | a. Group Learning and
Teaching | T1, Ch-7 | Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination. | Evaluation
Component | Duration | Weightage | Date | Syllabus (Lec.No.) | Remarks | |-------------------------|-------------------------|-----------|------------|--------------------|---------| | Test 1 | 60 Minutes | 20 | 17-02-2025 | 1-15 | СВ | | Test 2 | 60 Minutes | 20 | 07-04-2025 | 16-30 | ОВ | | Quiz/Assignment/Lab | Throughout the Semester | 20 | ** | ** | СВ | | Comprehensive Exam | 3 Hours | 40 | 05-05-2025 | 01-40 | СВ | OB= Open Book **Make-up Policy:** Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must. **General:** It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc Date: 10/01/2025 Dr.PALAK KESHWANI Instructor-in-charge Faculty of Science and Technology Second Semester, 2024-2025 Course Handouts | Course Code | Course Title | L | P | T | U | |-------------|------------------|---|---|---|---| | CS328 | Machine Learning | 3 | 0 | 0 | 3 | ### **Instructor-in-charge: Dr.PINKEY CHOUHAN** ### **Learning Outcomes:** - 1. Introduce the basic principles of ML towards problem solving, inference, perception, knowledge representation and learning. - 2. Investigate applications of ML techniques in machine learning models - 3. Experiment with a machine learning model for simulation and analysis. - 4. The course will cover the major approaches to learning namely, supervised, unsupervised, and reinforcement learning. The course emphasizes various techniques, which have become feasible with increased computational power and our ability to regression, decision trees, support vector machines, artificial neural networks, Bayesian techniques, Hidden Markov models, genetic algorithms etc. Some advanced topics like active and deep learning | Text Book T1 | Tom M. Mitchell, Machine Learning, The McGraw-Hill Companies, Inc. International Edition 1997. | |-------------------|---| | Reference Book R1 | Christopher M.Bhisop Pattern Recognition and Machine Learning
Springer, 2006 | | Reference Book R2 | D.Michie, D.J Spiegelhalter, C.C.Tylor (eds), Machine learning, Nerual and Statistical Classification, Ellis Horwood Publishers, Online Link http://www.amsta.leeds.ac.uk/~tibs/Elemstatlearn/Printings/ESLII/-print10.pd | | Reference Book R3 | Hal Daume III, A Course in Kevin Murphy, Machine Learning; A Probabilistic Perspective, MIT Press, 2012 Online Link https;//mitpress.mit.edu/books/machine learning-0 | | Lecture
Nos. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference
(Ch./Sec./
Pa ge
Nos.of
Text Book) | |-----------------|---------------------------------------|--|---|--| | 1-5 | Overview of
ML | Introduction to
Machine Learning,
Probability theory,
Decision theory | Group Learning and | TB[Ch-1,
R1[Ch2],
TB[Apndx-C] | | 6-9 | Basic concept
of regression | ii inear nacie | a. Group Learning and
Teaching | R1[Ch-3] | | 10-14 | Overview & Techniques of liner models | Liner Models for classification: Discriminant Functions, Probabilistic Generative Classifiers, | Technology-Based Learning | R1[Ch-4] | | 15-9 | Techniques of | Bayesian Learning
Techniques: Bayes
optimal classifier, ,
Naive Bayes
Classifier | Peer Teaching | TB[Ch-6] | | Lecture
Nos. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference
(Ch./Sec./
Pa ge
Nos.of
Text Book) | |-----------------|---|---|---|--| | 20-26 | Overview&
Non-
linear Models
Techniques: | _ | c. Technology based
Learning | TB[Ch-3],
TB[Ch-4],
R1[Ch-5],
TB[Ch-8] | | 27-30 | Overview and
SVM
Techniques: | Margin/Kernel
Based Approaches:
Support Vector
Machines | a. Group Learning and
Teaching | Class Notes,
R1[Ch-7] | | 31-34 | | Graphical Models:
Bayesian Belief
Networks, Hidden
Markov Models | a. Group Learning and
Teaching | TB[Ch-6],
class notes | | 35-38 | Unsupervised
Learning
concept | Unsupervised
Learning: Mixture
Models, K-means
Clustering, | a. Group Learning and
Teaching | TB[Ch-6],
R1[Ch-9] | | Lecture
Nos. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference
(Ch./Sec./
Pa ge
Nos.of
Text Book) | |-----------------|-----------------------|--|--|--| | | Learning: Concept | Reinforcement Learning: Q Learning, Non-deterministic rewards & actions, Temporal difference learning, Generalizatio | a. Group Learning and
Teaching | TB[Ch-13] | Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination. | Evaluation
Component | Duration | Weightage | Date | Syllabus (Lec.No.) | Remarks | |-------------------------|-------------------------|-----------|------------
--------------------|---------| | Test 1 | 60 Minutes | 20 | 19-02-2025 | 1-12 | СВ | | Test 2 | 60 Minutes | 20 | 09-04-2025 | 13-26 | ОВ | | Quiz/Assignment/Lab | Throughout the Semester | 20 | ** | ** | СВ | | Comprehensive Exam | 3 Hours | 40 | 12-05-2025 | 1-40 | СВ | ^{**} To be announced in the class CB= Close Book Exam OB= Open Book **Make-up Policy:** Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must. **General:** It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc Date: 08/01/2025 Dr.PINKEY CHOUHAN Instructor-in-charge Faculty of Science and Technology Second Semester, 2024-2025 Course Handouts | Course Code | Course Title | L | P | T | U | |-------------|------------------------------|---|---|---|---| | EC324 | RF and Microwave Engineering | 3 | 0 | 0 | 3 | Instructor-in-charge: Mr.ROHIT KUMAR ## **Learning Outcomes:** After successful completion of the course student will be able to: - 1. Understand and remember basic concepts and applications of microwave systems. - 2. Analyze and solve problems related to microwave transmission lines. - 3. Design, analyze and solve problems related to microwave waveguide - 4. Analyze, test and use, maintain various microwave components. - 5. Design simple microwave strip lines, couplers, Microwave filters. | Text Book T1 | MicrowaveEngineering,DavidPozar,JohnWiley&Sons,Edition,1999. | |-------------------|--| | Text Book T2 | MicrowaveDevicesandCircuits,SumuelY.Liao,PHI,3rd.Ed,2003. | | Reference Book R1 | FoundationforMicrowaveEngineering,R.E.Collins,Wiley-IEEEPress,2ndEd.2001. | | Reference Book R2 | ElectromagneticwavesandRadiatingSystems,JordanandBalmain,TM H,4th.Ed,1999 | | Reference Book R3 | ElectronicCommunicationSystems,Kennedy,3 rd Edition,McGrawhill, 1995. | | Lecture
Nos. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game based Learning c. Technology based Learning d. Peer teaching e. Project based Learning | Reference
(Ch./Sec.
/Page Nos.
ofText Book) | |-----------------|--|--|--|--| | 1 | Introduction to Microwave engineering. | Frequency bands;
Microwave and
RF Engg,
Problems &
limitations at high
frequencies,
advantages | Group Learning and Teaching | T1:1.1
T2:1.1 | | 2-5 | Study of different phenomenon affecting microwave propagation. | Propagation of
wave in free
space, atmospheric
effect, ground
effects, plasma
effects. | Group Learning and Teaching | R3:Ch.16,17 | | 6-8 | To study guided waves on surfaces | Modes of surface
waves, strip lines
and micro strip
lines | Peer teaching | T1:3.6-
3.8T2:11 | | 9-11 | To understand the concepts of impedance and the representation of incident | Concepts of impedance, equivalent voltages currents, impedance & admittance matrix, S-matrix, ABCD parameters. | Peer teaching | T1:4.1-4.4
R1:4.1-4.2
R1:4.5-4.10 | | 12-13 | To reflected and transmitted waves for microwave passive network analysis. | Signal flow graphs
and circuit
analysis | Peer teaching | T1:4.5R1:4.1
0 | | Lecture
Nos. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game based Learning c. Technology based Learning d. Peer teaching e. Project based Learning | Reference
(Ch./Sec.
/Page Nos.
ofText Book) | |-----------------|---|---|--|--| | 14-16 | To study various microwave resonators | Resonantcircuits,T
ransmission line
resonators,cavity
resonators,dielectri
cresonators,excitat
ion of resonators | Peer teaching | T1:6.1-
6.5,6.7
T2:4.3R1:7.1
-
7.2,R1:7.4,7. | | 17-21 | Tostudymicrowave components | Dividers, circulator s, isolators, Directional couplers and other hybrid components. | Peer teaching | T1:7.1-
7.9T2:
4.4-
4.6R1:6.4
-6.6,6.10 | | 22-24 | Overview of
design and
principle of
semiconductor
devices used as
microwave
ssourcesand circuit
elements | Microwave
HBTs,FETS,MES
FETS | Peer teaching | T2:5.2-5.3;
T2:6.1-6.4; | | 25-26 | To study microwave diodes | Transferred
electron
devices,GUNNeff
ect, GUNNdiodes | Technology based Learning | T2:7.1-7.5 | | 27-28 | To study avalanche diodes | Avalanche Transit
time
devices,IMPATT,
TRAPATT,BARI
TT | Technology based Learning | T2:8.1-8.4 | | Lecture
Nos. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game based Learning c. Technology based Learning d. Peer teaching e. Project based Learning | Reference
(Ch./Sec.
/Page Nos.
ofText Book) | |-----------------|---|---|--|--| | 29-32 | To design high power sources of microwave like Klystron Magnetron & amplifiers using TWTs | Klystrons,
Multicavity
Klystrons,
ReflexKlystronsT
WTs | Technology based Learning | T2:9.2-9.5 | | 33-34 | Overview of design and principle of high power sources of microwave | Magnetrons | Peer teaching | T2:10.1 | | 35-36 | An introduction to design of Microwave antennas | Antennas special problems and design at microwave frequencies | Peer teaching | Classnotes | | 37-38 | To study the RF and Microwave Comm. Systems. | Microwave and RF systems ,transmitters and receivers. | Peer teaching | R2:T1:121 | | 39-40 | To study EMI &
EMC | An introduction to
Electromagnetic
Interference and
Compatibility | Peer teaching | ClassNotes | | 41-42 | Other microwave
applications such
as Radar,
Radiometry,
microwave
Ovens etc. | Radar equations
and various types
of radars such as
pulse, Doppler,
RCS, etc.
Microwave ovens
and Radiometry. | Technology based Learning | R2:T1:12.3-
12.4,T1:12.6 | Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination. | Evaluation
Component | Duration | Weightage | Date | Syllabus (Lec.No.) | Remarks | |-------------------------|-------------------------|-----------|------------|--------------------|---------| | Test 1 | 60 Minutes | 20 | 17-02-2025 | 1-15 | СВ | | Test 2 | 60 Minutes | 20 | 07-04-2025 | 16-34 | ОВ | | Quiz/Assignment/Lab | Throughout the Semester | 20 | ** | | СВ | | Comprehensive Exam | 3 Hours | 40 | 05-05-2025 | 1- 42 | СВ | ^{**} To be announced in the class CB= Close Book Exam OB= Open Book **Make-up Policy:** Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must. **General:** It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc Date: 07/01/2025 Mr.ROHIT KUMAR Instructor-in-charge Faculty of Science and Technology Second Semester, 2024-2025 Course Handouts | Course Code | Course Title | L | P | T | U | |-------------|---------------------------|---|---|---|---| | EC325 | Analog Electronics | 3 | 0 | 0 | 4 | ## **Instructor-in-charge: Mr.ROHIT KUMAR** #### **Learning outcomes:** After successful completion of the course student will be able to - 1. To design the circuits using operational amplifiers for various applications. - 2. To analyze and design amplifiers, active filters using Op-amp. - 3. To develop skills required for designing and testing integrated circuits - 4. To apply the gain-bandwidth concept and frequency response of the three basic amplifiers. - 5. To design the combinational logic circuits for different applications. | Text Books T1 | L.K. Maheshwari and M.M.S. Anand, Analog Electronics, 1 st Ed., PHI, 2005. | |-------------------|--| | Reference Book R1 | Sedra and Smith, Microelectronics Circuits, Oxford Univ. Press, New York, 2014. | | Reference Book R2 | I.S.Franco, Design with Operational Amplifiers and Analog Integrated Circuits, 3rdedition, TMH, New Delhi, 2003. | | Reference Book R3 | RamakanthA.Gayakwad, Op-Amps and Linear Integrated Circuits, 4th Ed, Pearson Education 2006. | | Lecture
Nos. | Learning
Objective | Topics to be
Covered | Teaching Learning strategies: a. Group Learning and Teaching b. Game based Learning c. Technology based Learning d. Peer teaching e. Project based Learning | Reference
(Ch/Sec.
/Page Nos. of
Text/Ref.
Books) |
-----------------|--------------------------------|-----------------------------|---|---| | 1-2 | Review of fundamental Concepts | Circuit Theorems & Analysis | c. Technology based
Learning | T1: 1.1, 1.2
T1: 1.3 | | Lecture
Nos. | Learning
Objective | Topics to be
Covered | Teaching Learning strategies: a. Group Learning and Teaching b. Game based Learning c. Technology based Learning d. Peer teaching e. Project based Learning | Reference
(Ch/Sec.
/Page Nos. of
Text/Ref.
Books) | |-----------------|---|---|--|--| | | | Basic Electronic devices | | | | 3-7 | Focuses on
the basics of
Ideal and
Practical
Operational
Amplifier | An Ideal Op-amp Basic Configurations of Op-amps Practical Op-amp Frequency Compensation | d. Peer teaching | T1: 2.1-2.3
T1: 2.4
T1: 2.5.1
T1: 2.5.2 | | 8-11 | Application of
Opamp in
Analog
Electronic
Systems. | Instrumentation Amplifier, Programmable Gain Amplifier Negative Feedback Amplifiers Inductance Simulation | d. Peer teaching | T1: 3.2
T1: 3.4
T1: 3.5
T1: 3.6 | | 12-16 | Practical realization of Active Filters | Basic Theory of
Filters
Realization of
Active Filters | d. Peer teaching | R1: 7.1-7.10 | | 17-24 | Application of
Opamp in
realization of
Non-linear
functions | Logarithmic Amplifier Analog Multipliers Applications Precision Circuits Comparators Schmitt Triggers Analog Switch | d. Peer teaching | T1: 5.2
T1: 5.3.1-
5.3.6
T1: 5.4
T1: 5.5
T1: 5.6.1-
5.6.2
T1: 5.6.4
T1: 5.7.1-
5.7.3
T1: 5.8 | | Lecture
Nos. | Learning
Objective | Topics to be
Covered | Teaching Learning strategies: a. Group Learning and Teaching b. Game based Learning c. Technology based Learning d. Peer teaching e. Project based Learning | Reference
(Ch/Sec.
/Page Nos. of
Text/Ref.
Books) | |-----------------|---|--|--|---| | | | Sample-and-
Hold Circuits,
Analog
Multiplexers | | T1: 5.9.1-
5.9.2 | | 25-30 | Generation of
Various types
of signals
using Op-
amps | Sinusoidal Oscillators Non-sinusoidal Oscillators Function Generator Phase Locked Loop | d. Peer teaching | T1: 6.2
T1: 6.3
T1. 6.5
T1: 6.6 | | 31-34 | Use of Op-
amps in
Voltage
Regulation | Voltage Regulator Circuits Switched capacitor voltage converters Switching Regulators | d. Peer teaching | T1: 7.1-7.3
T1: 7.4.5
T1: 7.4.6(part) | | 35-36 | IC Power
Amplifiers | Fixed gain,
Bridge
Amplifiers | d. Peer teaching | R1: 14.8 | | 37 | Tuned
Amplifiers | Basic Principle,
Tuned circuits | d. Peer teaching | R1: 12.11 | | 38-40 | Data
Converters | DAC & ADC circuits | c.Technology based
Learning | R1: 9.7-9.9 | | Lecture
Nos. | Learning
Objective | Topics to be
Covered | Teaching Learning strategies: a. Group Learning and Teaching b. Game based Learning c. Technology based Learning d. Peer teaching e. Project based Learning | Reference
(Ch/Sec.
/Page Nos. of
Text/Ref.
Books) | |-----------------|-------------------------------------|--|---|---| | 41-42 | IC sensors
and Analog
Systems | Evolution of sensors, classification of sensors, Introduction to MEMS Typical IC Sensors | c.Technology based
Learning | T1: 11.1-11.6 | # **List of Experiment:** | S.No. | Name of the Experiment | |-------|--| | 1 | Voltage regulator using operational amplifier . | | 2 | Function generator using operational amplifier (sine, triangular & square wave) | | 3 | Study of basic properties of Operational Amplifier: Inverting and Non-Inverting Amplifiers | | 4 | Study of Differentiator and Integrator using Operational Amplifier | | 5 | Log and antilog Operational amplifiers | | 6 | Inverting and Non Inverting Voltage comparator using IC 741 | | 7 | Wien bridge oscillator using operational amplifier | | 8 | Astable and Monostablemultivibrator using IC 555 | | 9 | Voltage to current converters using IC 741 | Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination. | Evaluation
Component | Duration | Weightage | Date | Syllabus (Lec.No.) | Remarks | |-------------------------|-------------------------|-----------|------------|--------------------|---------| | Test 1 | 60 Minutes | 20 | 18-02-2025 | 1-15 | СВ | | Test 2 | 60 Minutes | 20 | 08-04-2025 | 16-34 | ОВ | | Quiz/Assignment/Lab | Throughout the Semester | 20 | ** | ** | СВ | | Comprehensive Exam | 3 Hours | 40 | 07-05-2025 | 1- 42 | СВ | ^{**} To be announced in the class CB= Close Book Exam OB= Open Book **Make-up Policy:** Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must. **General:** It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc Date: 09/01/2025 Mr.ROHIT KUMAR Instructor-in-charge Faculty of Science and Technology Second Semester, 2024-2025 Course Handouts | Course Code | Course Title | L | P | T | U | |-------------|--------------------------|---|---|---|---| | EC323 | Microelectronic Circuits | 3 | 0 | 1 | 4 | ## Instructor-in-charge: Mrs.BHAVNA CHAUDHARY ## **Learning Objectives:** The objective of the course is to - 1. Develop the student with the principles, operation and applications of the analog building blocks like diodes, BJT, FET for performing various functions. - 2. Learn the qualitative analysis using models, equations to illustrate the concepts and to gain the knowledge of existing analog circuits. - 3. Understand the working and analysis of amplifiers, feedback amplifiers and oscillators | | Microelectronic Circuits | |-------------------|--| | Text Book T1 | A.S.Sedra & K.Smith, Microelectronic Circuits, 5 th edition, Oxford | | | higher education, 2009. | | | Microelectronic Circuits | | Reference Book R1 | Robert L.Boylestad and Louis Nashelsky, Electronic Devices and | | Reference Book K1 | Circuit Theory, 10th edition, Pearson, New Jersy, Coloumbus, ohio, | | | 2011 | | | Microelectronic Circuits | | Reference Book R2 | Jacob Millman, CCHalkias, SatyabrataJit, Electronic Devices and | | | Circuits, 3rd edition, TMH, New Delhi, 2011. | | | Microelectronic Circuits | | Reference Book R3 | S. Shalivananan, N.Suresh Kumar, A.VallavaRaj, Electronic | | | Devices & Circuits, Tata McGraw Hill, New Delhi,2003 | | Lecture | Learning | Topics to be | Teaching Learning Strategies a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. e. Project based Learning. | Referenc | |---------|--|---|--|----------| | Nos. | Objective | Covered | | e | | 1 | Characteristic s and type of amplifiers. | Amplifiers,
Circuit Models,
Frequency | Group Learning and Teaching | T1 Ch-l | | Lecture
Nos. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. e. Project based Learning. | Referenc
e | |-----------------|---|---|---|--------------------| | | | response of amplifiers | | 1.4,1.5,1. | | 2 | BJT
Structure, I-V
Characteristic
s | Device structure
& Physical
operation of BJT,
I-V
Characteristics | Group Learning and Teaching | T1 Ch-5
5.1 | | 3 | Working of
BJT as a
switch and
amplifier | BJT as an
Amplifier &
switch | Group Learning and Teaching | T1 Ch-5
5.2,5.3 | | 4 | Analysis of
BJT circuits
under DC
conditions | BJT circuits at DC | Group Learning and Teaching | T1 Ch-5
5.4 | | 5 | Analysis of
BJT circuits
under DC
conditions | BJT circuits at DC | Technology based Learning | T1 Ch-5
5.4 | | 6 | Biasing and
types of
Biasing | Biasing in BJT amplifier circuits | Group Learning and Teaching | T1 Ch-5
5.5 | |
7 | Small signal
models of
BJT | Small signal operation & Models | Group Learning and Teaching | T1 Ch-5
5.6 | | 8 | BJT as a single stage amplifier | Single stage BJT
Amplifiers | Group Learning and Teaching | T1 Ch-5
5.7 | | 9 | High frequency models. | BJT Internal
capacitances
&High frequency
model | Group Learning and Teaching | T1 Ch-5
5.8 | | Lecture
Nos. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. e. Project based Learning. | Referenc
e | |-----------------|--|---|--|----------------| | 10 | MOSFET
Introduction | Device structure
& Physical
operation of
MOSFET | Group Learning and Teaching | T1 Ch-4
4.1 | | 11 | I-V
Characteristic
s of
MOSFET. | MOSFET I-V
Characteristics | Group Learning and Teaching | T1 Ch-4
4.2 | | 12 | Working of
MOSFET as
amplifier | MOSFET as an amplifier | Group Learning and Teaching | T1 Ch-4
4.3 | | 13 | Working of
MOSFET as
switch | MOSFET as a switch | Group Learning and Teaching | T1 Ch-4
4.4 | | 14 | MOSFET as a switch circuits at DC. | MOSFETS
Circuits at DC | Group Learning and Teaching | T1 Ch-4
4.5 | | 15 | Biasing of MOSFET. | Biasing in MOS amplifier circuits | Group Learning and Teaching | T1 Ch-4
4.6 | | 16 | MOSFET as
small signal
models | Small signal operation & Models | Group Learning and Teaching | T1 Ch-4
4.7 | | 17 | MOSFET as
a single stage
amplifier | Single stage MOS Amplifiers, MOSFET Internal capacitances | Group Learning and Teaching | T1 Ch-4
4.7 | | 18 | high
frequency
models. | High frequency models | Group Learning and Teaching | T1 Ch-4
4.8 | | Lecture
Nos. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. e. Project based Learning. | Referenc
e | |-----------------|--|--|--|----------------| | 19 | To Understand the concept of Differential Amplifiers | The MOS
Differential pair | Group Learning and Teaching | TI Ch-7 | | 20 | Operation of MOS Differential amplifier. | The MOS
Differential pair. | Technology based Learning | TI Ch-7 | | 21 | Operation of MOS Differential amplifier. | The MOS
Differential pair | Group Learning and Teaching | TI Ch-7 | | 22 | Operation of MOS Differential amplifier. | The MOS
Differential pair | Group Learning and Teaching | TI Ch-7
7.1 | | 23 | Practical characteristic s of MOS Differential pair. | Small signal
operation of
MOS Differential
pair | Group Learning and Teaching | T1 Ch-7 | | 24 | Practical characteristic s of MOS Differential pair. | Small signal
operation of
MOS Differential
pair | Technology based Learning | T1 Ch-7 | | 25 | Practical characteristic s of MOS Differential pair. | Non-ideal
characteristics of
MOS Differential
pair. | Group Learning and Teaching | T1 Ch-7 | | 26 | Practical characteristic | Non-ideal characteristics of | Technology based Learning | T1 Ch-7 | | Lecture
Nos. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. e. Project based Learning. | Referenc
e | |-----------------|---|---|--|----------------------------| | | s of MOS
Differential
pair. | MOS Differential pair. | | 7.4 | | 27 | Effect of active load on MOS differential amplifier. | MOS Differential amplifier with active load. | Group Learning and Teaching | T1 Ch-7
7.5 | | 28 | Effect of active load on MOS differential amplifier. | MOS Differential amplifier with active load. | Technology based Learning | T1 Ch-7
7.5 | | 29 | To
Understand
the concept of
Feedback
concept | General Feedback structure, Properties of Negative feedback, Four basic feedback topologies | Group Learning and Teaching | T1 Ch-8
8.1,8.2,8.
3 | | 30 | To
Understand
the concept of
Feedback
concept | General Feedback structure, Properties of Negative feedback, Four basic feedback topologies | Technology based Learning | T1 Ch-8
8.1,8.2,8.
3 | | 31 | Analysis of
Series-Shunt
& Series-
Series
feedback
amplifier | Series-Shunt and
Series-Series
feedback
amplifier | Group Learning and Teaching | T1 Ch-8
8.4 | | Lecture
Nos. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. e. Project based Learning. | Referenc
e | |-----------------|--|--|---|---------------------------| | 32 | Analysis of Series-Shunt & Series- Series feedback amplifier | Series-Shunt
feedback
amplifier | Technology based Learning | T1 Ch-8
8.5 | | 33 | Analysis of Shunt-Shunt & Shunt- Series feedback amplifier. | Shunt-Shunt
feedback
amplifier. | Group Learning and Teaching | T1 Ch-8
8.6 | | 34 | Analysis of
Shunt-Shunt
& Shunt-
Series
feedback
amplifier. | Shunt-Shunt
feedback
amplifier. | Group Learning and Teaching | T1 Ch-8
8.6 | | 35 | To Understand the concept of power amplifiers and output stages | Classification of output stages, Class A and Class B output stage. | Group Learning and Teaching | TI Ch-14 14.1, 14.2, 14.3 | | 36 | To Understand the concept of power amplifiers and output stages | Classification of output stages, Class A and Class B output stage. | Technology based Learning | TI Ch-14
14.1,
14.2 | | 37 | To
Understand
the concept of | Classification of output stages, Class A and | Group Learning and Teaching | TI Ch-14 | | Lecture
Nos. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. e. Project based Learning. | Referenc
e | |-----------------|---|--|---|-----------------------| | | power
amplifiers
and output
stages | Class B output stage. | | 14.2,
14.3 | | 38 | Overview of class AB Output stage | Class AB output stage and its biasing. | Group Learning and Teaching | TI Ch-14
14.5 | | 39 | Overview of class AB Output stage | Class AB output stage and its biasing. | Group Learning and Teaching | TI Ch-14
14.4 | | 40 | To learn the concepts power transistors | Power BJT's and MOS power transistors. | Technology based Learning | TI Ch-14
14.6,14.9 | Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination. | Evaluation
Component | Duration | Weightage | Date | Syllabus (Lec.No.) | Remarks | |-------------------------|-------------------------|-----------|------------|--------------------|---------| | Test 1 | 60 Minutes | 20 | 18-2-2025 | 1-15 | СВ | | Test 2 | 60 Minutes | 20 | 08-04-2025 | 16-30 | ОВ | | Quiz/Assignment/Lab | Throughout the Semester | 20 | ** | 31-40 | СВ | | Comprehensive Exam | 3 Hours | 40 | 09-05-2025 | 1-40 | СВ | ^{**} To be announced in the class CB= Close Book Exam OB= Open Book **Make-up Policy:** Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must. **General:** It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc Date: 07/01/2025 Mrs.BHAVANA CHOUDHARY Instructor-in-charge Faculty of Science and Technology Second Semester, 2024-2025 Course Handouts | Course Code | Course Title | L | P | T | U | |-------------|-------------------------------|---|---|---|---| | EC322 | Antennas and Wave Propagation | 3 | 0 | 0 | 3 | ## Instructor-in-charge: Mrs.BHAVANA CHOUDHARY ## **Learning Outcomes:** The objective of the course is to: - 1. Introduce the fundamental principles of antenna theory - 2. Apply them to the analysis, Design and measurements of antennae - 3. Use in Wireless, RADAR, Mobile Communication and others | | Antennas and Wave Propagation | | | |-------------------|---|--|--| | Text book T1 | Antenna and Wave Propagation ,R L Yadava ,PHI Learning1st | | | | | Edition | | | | | Antennas and Wave Propagation | | | | Reference Book R1 | Antennas and Wave Propagation , John D Kraus ,R J Marhefka, A S | | | | | Khan, TMH, 4 th Edition | | | | |
Antennas and Wave Propagation | | | | Reference Book R2 | Antennas and Wave Propagation A P Harish, M Sachidananda, | | | | | Oxford University Press, 1 st Edition, | | | | Reference Book R3 | Antennas and Wave Propagation | | | | Reference BOOK K3 | Antennas and Wave Propagation G S N Raju, Pearson, 1st Edition | | | | Lecture
No. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. e. Project based Learning. | Reference | |----------------|-----------------------------------|--|---|---------------| | 1 | Fundamental concepts of Radiation | Concept of radiation, Radiation pattern, | Group Learning and Teaching | $T(1),R_1(2)$ | | Lecture
No. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. e. Project based Learning. | Reference | |----------------|-----------------------|---|--|---------------------------| | | | Radiation resistance | | | | 2 | Antenna
basics | Directivity, Gain, Intensity, Beam area, Beam Efficiency, HPBW,FNBW | Group Learning and Teaching | R ₁ (2) ,T(3) | | 3 | Antenna
basics | Directivity, Gain, Intensity, Beam area, Beam Efficiency, HPBW,FNBW | Group Learning and Teaching | R ₁ (2) ,T(3) | | 4 | Antenna
aperture | Effective aperture, aperture efficiency | Group Learning and Teaching | $T(3),R_1(2),R_2(2)$ | | 5 | Antenna
aperture | Effective aperture, aperture efficiency | Group Learning and Teaching | $T(3),R_1(2),R_2(2)$ | | 6 | Linear Wire antennas | Hertzian dipole,
Half-wave
dipole Folded
dipole,
Monopole | Group Learning and Teaching | T(5),R ₁ (3,4) | | Lecture
No. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. e. Project based Learning. | Reference | |----------------|-----------------------|---|--|---| | 7 | Linear Wire antennas | Hertzian dipole,
Half-wave
dipole Folded
dipole,
Monopole | Group Learning and Teaching | T(5),R ₁ (3,4) | | 8 | Antenna
arrays | Point sources,
different
configurations of
arrays, Binomial
array | Group Learning and Teaching | T(4),R ₁ (5) | | 9 | Antenna
arrays | Point sources,
different
configurations of
arrays, Binomial
array | Group Learning and Teaching | T(4),R ₁ (5) | | 10 | Antenna
arrays | Point sources,
different
configurations of
arrays, Binomial
array | Group Learning and Teaching | T(4),R ₁ (5) | | 11 | VHF,UHF
antennas | V- antenna ,
Rhombic, Yagi-
Uda, Log-
Periodic, Loop,
Helical antenna | Group Learning and Teaching | T(5,6,9,10,12)
R ₁ (7,8),R ₂ (6) | | Lecture
No. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. e. Project based Learning. | Reference | |----------------|-----------------------|---|--|---| | 12 | VHF,UHF
antennas | V- antenna ,
Rhombic, Yagi-
Uda, Log-
Periodic, Loop,
Helical antenna | Group Learning and Teaching | T(5,6,9,10,12)
R ₁ (7,8),R ₂ (6) | | 13 | Microwave antennas | Parabolic
reflector, feed
systems, field
distributions,
Horn, Slot,
Lens& Micro
strip antenna | Group Learning and Teaching | T(7,8,11,13)
R ₁ (9,14) | | 14 | Microwave antennas | Parabolic
reflector, feed
systems, field
distributions,
Horn, Slot,
Lens& Micro
strip antenna | Group Learning and Teaching | T(7,8,11,13)
R ₁ (9,14) | | 15 | Microwave
antennas | Parabolic
reflector, feed
systems, field
distributions,
Horn, Slot,
Lens& Micro
strip antenna | Group Learning and Teaching | T(7,8,11,13)
R ₁ (9,14) | | 16 | Microwave
antennas | Parabolic
reflector, feed
systems, field
distributions,
Horn, Slot,
Lens& Micro
strip antenna | Group Learning and Teaching | T(7,8,11,13)
R ₁ (9,14) | | Lecture
No. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. e. Project based Learning. | Reference | |----------------|---|---|--|---------------------------| | 17 | Measurement
of antenna
Parameters | Measurement of radiation pattern, Gain, Impedance, Current, Reflectivity | Group Learning and Teaching | T(17),R ₁ (21) | | 18 | Measurement
of antenna
Parameters | Measurement of radiation pattern, Gain, Impedance, Current, Reflectivity | Group Learning and Teaching | T(17),R ₁ (21) | | 19 | Measurement
of antenna
Parameters | Measurement of radiation pattern, Gain, Impedance, Current, Reflectivity | Group Learning and Teaching | T(17),R ₁ (21) | | 20 | Antennas for special applications | Ground plane
antenna ,Sleeve,
turnstile, Omni
directional
antenna,
submerged
antennas | Group Learning and Teaching | R ₁ (15) | | 21 | Antennas for special applications | Ground plane
antenna ,Sleeve,
turnstile, Omni
directional
antenna,
submerged
antennas | Group Learning and Teaching | R ₁ (15) | | Lecture
No. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. e. Project based Learning. | Reference | |----------------|---|---|--|---------------------------| | 22 | Antennas for special applications | Ground plane
antenna ,Sleeve,
turnstile, Omni
directional
antenna,
submerged
antennas | Group Learning and Teaching | R ₁ (15) | | 23 | Basics of
Wave
propagation | general classification, different modes of wave propagation, Ray and Mode concept | Group Learning and Teaching | T(14),R ₁ (22) | | 24 | Basics of
Wave
propagation | general classification, different modes of wave propagation, Ray and Mode concept | Group Learning and Teaching | T(14),R ₁ (22) | | 25 | Basics of
Wave
propagation | general classification, different modes of wave propagation, Ray and Mode concept | Group Learning and Teaching | T(14),R ₁ (22) | | 26 | Reflections
and
refractions in
wave
propagation | Multi hop
Propagation | Group Learning and Teaching | T(14),R ₁ (25) | | Lecture
No. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. e. Project based Learning. | Reference | |----------------|---|---|--|---------------------------| | 27 | Reflections
and
refractions in
wave
propagation | Multi hop
Propagation | Group Learning and Teaching | T(14),R ₁ (25) | | 28 | Ground
wave
propagation | Plane earth reflection ,Surface wave tilt, impact of Imperfect Earth, Earth's behavior at different frequencies | Group Learning and Teaching | T(14),R ₁ (23) | | 29 | Ground
wave
propagation | Plane earth reflection ,Surface wave tilt, impact of Imperfect Earth, Earth's behavior at different frequencies | Group Learning and Teaching | T(14),R ₁ (23) | | 30 | Space Wave propagation | Curvature of Earth, Shadowing effect, Super refraction, Scattering phenomena, Tropospheric propagation, M- curves, LOS distance | Group Learning and Teaching | T(15),R ₁ (24) | | Lecture
No. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. e. Project based Learning. | Reference | |----------------|----------------------------------
---|--|---------------------------| | 31 | Space Wave propagation | Curvature of Earth, Shadowing effect, Super refraction, Scattering phenomena, Tropospheric propagation, M- curves, LOS distance | Group Learning and Teaching | T(15),R ₁ (24) | | 32 | Losses in space wave propagation | Fading, Path loss calculation | Group Learning and Teaching | R ₁ (24),T(16) | | 33 | Losses in space wave propagation | Fading, Path loss calculation | Group Learning and Teaching | R ₁ (24),T(16) | | 34 | Sky wave propagation | Structural details
of Ionosphere,
Absence and
presence of
Earth's magnetic
field, GMF | Group Learning and Teaching | T(16),R ₁ (25) | | 35 | Sky wave propagation | Structural details
of Ionosphere,
Absence and
presence of
Earth's magnetic
field, GMF | Group Learning and Teaching | T(16),R ₁ (25) | | Lecture
No. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. e. Project based Learning. | Reference | |----------------|--|---|--|---------------------------| | 36 | Measures of
Ionosphere
Propagation | Refractive index,
Critical
frequency, angle
of incidence,
MUF, OF | Group Learning and Teaching | T(16),R ₁ (25) | | 37 | Measures of
Ionosphere
Propagation | Refractive index,
Critical
frequency, angle
of incidence,
MUF, OF | Group Learning and Teaching | T(16),R ₁ (25) | | 38 | Calculations in Ionosphere | LUF, Virtual
Height, Skip
Distance | Group Learning and Teaching | R ₁ (25),T(16) | | 39 | Calculations in Ionosphere | LUF, Virtual
Height, Skip
Distance | Group Learning and Teaching | R ₁ (25),T(16) | | 40 | Abnormalities in Ionosphere | Attenuation
factor, SID,
Ionospheric
Storms, Sun spot
cycle | Group Learning and Teaching | R ₃ (9) | Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination. | Evaluation
Component | Duration | Weightage | Date | Syllabus (Lec.No.) | Remarks | |-------------------------|-------------------------|-----------|------|--------------------|---------| | Test 1 | 60 Minutes | 10 | | 1-20 | СВ | | Test 2 | 60 Minutes | 10 | | 21-40 | ОВ | | Quiz/Assignment/Lab | Throughout the Semester | 10 | ** | | СВ | | Comprehensive Exam | 3 Hours | 70 | | 1- 40 | СВ | ^{**} To be announced in the class CB= Close Book Exam OB= Open Book **Make-up Policy:** Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must. **General:** It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc Date: 07/01/2025 Mrs.BHAVNA CHOUDHARY Instructor-in-charge Faculty of Science and Technology Second Semester, 2024-2025 Course Handouts | Course Code | Course Title | | P | T | U | |--------------------|-----------------------|---|---|---|---| | EC321 | Digital Communication | 3 | 0 | 0 | 4 | **Instructor-in-charge: Dr.K NAGAIAH** #### **Learning Outcomes:** After Successful completion of the course student will be able to - 1. Analyze digital and analogy signals with respect to various parameters like bandwidth, noise etc - 2. Demonstrate generation and reconstruction of different pulse Code Modulation Schemes like PCM DOCM etc - 3. Acquire the knowledge of different pass band digital modulation techniques like ASK, PSK etc - 4. Calculate different parameters like power spectrum density, probability of erro etc of base abdn signal for optimum transmission - 5. Analyze the concepts of information theory, Huffman coding etc to increase average information per bit - 6. Generate and retrieve data using block codes and analyze their error detection and correction capabilities | Text Book T1 | Digital communications- Simon Haykin, John Wiley, 2005 | |-------------------|--| | Text Book T2 | Digital and anolog communiation systems- Sam Shanmugam, John Wiley,2005 | | Reference Book R1 | Principles Of Communication Systems-Herberet Taub, Donald L
Schiling, Goutham saha,3rf edition, Mc Graw Hill 2008 | | Reference Book R2 | Digital Communications 3rd Ed - I. A.Glover, P. M. Grant, 2nd Edition, Pearson Edu,, 2008 | | Reference Book R3 | Communication Systems B.P.Lathi, BS Publications, 2006 | | Reference Book R4 | Digital Communication – Theory, Techniques, and Applications – R.N.Mutagi, 2nd Edition, 2013 | | Lecture
No. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference
(Ch./Sec./
Text Book) | |----------------|---|--|---|--| | 1 | Elements of digital communication systems | Analyze the elements of digital communication system, the importance and Applications of Digital Communication | a. Group Learning and Teaching | T1- Back
ground and
preview page
1-24 | | 2 | Concepts of digital communication systems | Differentiate analog and digital systems, the advantages of digital communication systems over analog systems. The importance and the need of sampling theorem in digital communication systems. | a. Group Learning and
Teaching | Back ground
and preview
page 1-24 | | 3 | Concepts of digital communication systems | Conversion of analog signal to digital signal and the issues occur in digital transmission techniques like Bandwidth- S/N trade off. | a. Group Learning and Teaching | Back ground
and preview
page 1-24 | | Lecture
No. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference
(Ch./Sec./
Text Book) | |----------------|---|--|---|---| | 4-5 | Concepts of digital communication systems | Compute the power and bandwidth requirements of modern communication systems. Analyse the importance of Hartley Shannon law in calculating the BER and the channel capacity. | a. Group Learning and Teaching | Back ground
and preview
page 1-24 | | 6-8 | Pulse Code
Modulation | Explain the generation and reconstruction of PCM. To Analyze the effect of Quantization noise in Digital Communication. Analyse the different digital communication schemes like Differential PCM systems (DPCM), Delta modulation, and adaptive delta modulation. | c.Technology based
Learning | T1 chapter-3 | | Lecture
No. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference
(Ch./Sec./
Text Book) | |----------------|-------------------------------------|---|--|---------------------------------------| | 9-10 | Pulse Code
Modulation | Compare the digital communication schemes like Differential PCM systems (DPCM), Delta modulation, and adaptive delta modulation. Illustrate the effect of Noise in PCM and DM systems | c.Technology based
Learning | T1 chapter-3 | | 11-14 | Digital
Modulation
Techniques | Describe and differentiate the different shift keying formats used in digital communication. Compute the power and bandwidth requirements of modern communication systems modulation formats like those employing ASK, PSK, FSK, and QAM. Explain the different modulators like | c.Technology based
Learning | T1 chapter-6 | | Lecture
No. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference
(Ch./Sec./
Text Book) | |----------------
--|---|---|---------------------------------------| | | | ASK Modulator, Coherent ASK detector, non- Coherent ASK detector, Band width frequency spectrum of FSK, Non-Coherent FSK detector, Coherent FSK detector Analyze the need and use of PLL in FSK Detection | | | | 15-16 | Digital
Modulation
Techniques | Differentiate the different keying schemes -BPSK, Coherent PSK detection, QPSK & Differential PSK | c.Technology based
Learning | T1 chapter-6 | | 17 | Base Band
Transmission
and Optimal
reception of
Digital Signal | Identify the need of pulse shaping for optimum transmission and get the knowledge of Base band signal receiver model. | a. Group Learning and Teaching | T1 chapter-4 | | 18 | Base Band Transmission and Optimal reception of Digital Signal | Analyze different
pulses and their
power spectrum
densities | a. Group Learning and
Teaching | T1 chapter-4 | | Lecture
No. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference
(Ch./Sec./
Text Book) | |----------------|--|---|--|---------------------------------------| | 19-20 | Base Band
Transmission
and Optimal
reception of
Digital Signal | Calculation of Probability of error, optimum receiver, Optimum of coherent reception and understand the Signal space representation and calculate the probability of error. | a. Group Learning and Teaching | T1 chapter-4 | | 21-22 | Base Band
Transmission
and Optimal
reception of
Digital Signal | Explain the Eye diagram and its importance in calculating error. Describe cross talk and its effect in the degradation of signal quality in digital communication. | a. Group Learning and Teaching | T1 chapter-4 | | 23-25 | Source coding methods | Compute problems on Source coding methods like - Huffman code, variable length codes used in digital communication. Explain Source coding and | c.Technology based
Learning | T1 chapter-9 | | Lecture
No. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference
(Ch./Sec./
Text Book) | |----------------|-----------------------|--|---|---------------------------------------| | | | drawbacks of Lossy source Coding and how to increase the average information per bit. | | | | 26-28 | Linear Block
Codes | Illustrate the different types of codes used in digital communication and the Matrix description of linear block codes. Analyze and find errors, solve the numerical in Error detection and error correction of linear block codes Explain cyclic codes, the difference between linear block codes and cyclic codes. | c.Technology based
Learning | T1 chapter-10 | | 29-32 | Linear Block
Codes | Compute problems based on the representation of cyclic codes and | c.Technology based
Learning | T1 chapter-10 | | Lecture
No. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference
(Ch./Sec./
Text Book) | |----------------|-----------------------|---|---|---------------------------------------| | | | encoding and decoding of cyclic codes. Solve problems to find the location of error in the codes i.e., syndrome calculation. | | | | 33 | Convolution
Codes | Identify the difference between the different codes digital communication | c.Technology based
Learning | T1 chapter-10 | | 34-35 | Convolution
Codes | Describe Encoding & decoding of Convolutional Codes Solve problems on error detection & correction using state Tree and trellis diagrams. | c.Technology based
Learning | T1 chapter-10 | | 36-37 | Convolution
Codes | Solve problems
based on Viterbi
algorithm. | c.Technology based
Learning | T1 chapter-10 | | Lecture
No. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer teaching e. Project based Learning. | Reference
(Ch./Sec./
Text Book) | |----------------|-----------------------|---|---|---------------------------------------| | 38-40 | Convolution
Codes | Compute numerical on error calculations and compare the error rates in coded and uncoded transmission | c.Technology based
Learning | T1 chapter-10 | # **List of Experiments:** # **Digital Communication Laboratory: (List of Experiments)** | | , | |----|--| | 1 | Analog Signal Sampling And Reconstruction | | 2 | Pulse code Modulation and Demodulation | | 3 | Study of A/D and D/A converter , PRBS Generator | | 4 | Delta Modulation and Demodulation | | 5 | Adaptive Delta Modulation and CVSD | | 6 | Carrier Modulations & Demodulations (ASK,FSK,PSK) | | 7 | Binary Phase Keying(BPSK) Modulation and Demodulation | | 8 | Differential phase Shift Keying(DPSK) Modulation and Demodulation | | 9 | Quadrature Phase Shift Keying(QPSK) Modulation and Demodulation | | 10 | Differential Quadrature Phase Shift Keying (DQPSK) Modulation and Demodulation | | 11 | Time Division Multiplexer circuit Design | | 12 | Convolution encoder and Viterbi decoder | | 13 | Study of BPSK and other bandpass signal using MATLAB Code | | 14 | MATLAB Assignment | Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination. | Evaluation
Component | Duration | Weightage | Date | Syllabus (Lec.No.) | Remarks | |-------------------------|-------------------------|-----------|------------|--------------------|---------| | Test 1 | 60 Minutes | 10 | 19-02-2025 | 1-20 | СВ | | Test 2 | 60 Minutes | 10 | 09-04-2025 | 21-40 | ОВ | | Quiz/Assignment/Lab | Throughout the Semester | 10 | ** | | СВ | | Comprehensive Exam | 3 Hours | 70 | 14-05-2025 | 1- 40 | СВ | ^{**} To be announced in the class CB= Close Book Exam OB= Open Book **Make-up Policy:** Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must. **General:** It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc Date: 07/01/2025 Dr.K NAGAIAH Instructor-in-charge Faculty of Science and Technology Second Semester, 2024-2025 Course Handouts | Course Code | Course Title | L | P | T | U | |-------------|--|---|---|---|---| | CE323 | Water Supply and Waste Water
Management | 3 | 0 | 0 | 3 | ## **Instructor-in-charge: Mr.DILIP MISHRA** #### **Scope and Objectives of the course:** - 1. Comprehensive understanding of water supply and waste water engineering principles - 2. Study of water treatment processes and technologies - 3. Analysis of design, Operation and Maintenance of water and waste water infrastructure - 4. Equip students with fundamental Knowledge of water supply systems and waste water | Lecture
Nos. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer Teaching e. Project Based Learning. | Reference/
Text Book | |-----------------|---------------------------------|--|---|-------------------------| | 1 | Introduction of water resources | Estimation of surface water resources, Estimation of subsurface water resources | a. Group Learning
Teaching | T1 | | 2-3 | Water Quality | Predicting demand
for water, Impurities
of water
and their
significance | a. Group Learning
Teaching | T1 | | Lecture
Nos. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer Teaching e. Project Based Learning. | Reference/
Text Book | |-----------------|---|---|---|-------------------------| | 4-5 | Different Analysis of
Water | Physical analysis of
water, Chemical
analysis of water,
Bacteriological
analysis of water | a. Group Learning Teaching | T1 | | 6 | Minimum Standards
for water
quality | Waterborne diseases,
Standards for
potable
water | a. Group Learning
Teaching | T1 | | 7-8 | Schemes for intake of water | Intake of water:
Pumping schemes,
Intake of water:
Gravity schemes | a. Group Learning Teaching | T1 | | 9-10 | Operations & Processes of water treatment | Unit operations in water treatment, Processes in water treatment | a. Group Learning Teaching | T2 | | 11 | Principles and functions | Principles of water
treatment plant units,
Functions of water
treatment plant units | a. Group Learning
Teaching | T2 | | 12-13 | Design of treatment plants | Design of water treatment plant units, | a. Group Learning Teaching | T2 | | Lecture
Nos. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer Teaching e. Project Based Learning. | Reference/
Text Book | |-----------------|-----------------------|---|---|-------------------------| | 14-16 | Use of Aerators | Aerators in water
treatment, Flash
mixers in water
treatment, | a. Group Learning Teaching | T2 | | 17-18 | Coagulation in plant | Coagulation in water treatment, Flocculation in water treatment, | a. Group Learning
Teaching | T1 | | 19 | | Clariflocculator in water treatment | a. Group Learning
Teaching | T1 | | 20-21 | Plate settlers | Plate settlers in water treatment, Tube settlers in water treatment | a. Group Learning Teaching | T1 | | 22-23 | Sand filters | Pulsator clarifier in water treatment, Sand filters in water treatment, | a. Group Learning
Teaching | T1 | | 24 | Desalination of Water | Disinfection of
water, Softening of
water, Removal of
iron and manganese | a. Group Learning
Teaching | T1 | | Lecture
Nos. | Learning
Objective | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer Teaching e. Project Based Learning. | Reference/
Text Book | |-----------------|--|---|---|-------------------------| | 25 | | Defluoridation of
water, Desalination
process, Residue
management in
water treatment, | a. Group Learning
Teaching | T2 | | 26-28 | Construction aspect of water treatment devices | Construction aspects of water treatment, Operation aspects of water treatment, | a. Group Learning
Teaching | T2 | | 29-32 | Maintenance and storage Aspects | Maintenance aspects of water treatment | a. Group Learning
Teaching | T2 | | 33-35 | | Storage reservoirs:
types and capacity,
Balancing reservoirs:
location and
capacity, | a. Group Learning
Teaching | T1 | | 36-38 | Distribution Systems | Distribution system layout, Hydraulics of pipelines, | a. Group Learning
Teaching | T1 | | 39-40 | | Pipe fittings in
distribution
systems, Valves in
distribution systems | a. Group Learning
Teaching | T1 | Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination. | Evaluation
Component | Duration | Weightage | Date | Syllabus (Lec.No.) | Remarks | |-------------------------|-------------------------|-----------|------------|--------------------|---------| | Test 1 | 60 Minutes | 20 | 19-02-2025 | 1-10 | СВ | | Test 2 | 60 Minutes | 20 | 09-04-2025 | 11-20 | ОВ | | Quiz/Assignment/Lab | Throughout the Semester | 20 | ** | ** | СВ | | Comprehensive Exam | 3 Hours | 40 | 14-05-2025 | 1- 40 | СВ | ^{**} To be announced in the class CB= Close Book Exam OB= Open Book **Make-up Policy:** Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must. **General:** It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc Date: 08/01/2025 Mr.DILIP MISHRA Instructor-in-charge Faculty of Science and Technology Second Semester, 2024-2025 Course Handouts | Course Code | Course Title | L | P | T | U | |-------------|-------------------------|---|---|---|---| | CE325 | Finite Element Analysis | 3 | 2 | 0 | 4 | **Instructor-in-charge: Mr.DILIP MISHRA** ### **Scope and Objective of the Course:** - To impart foundational knowledge of classical structural analysis methods including force and displacement approaches, enabling students to analyze determinate and indeterminate structures like beams and frames effectively. - 2. To develop proficiency in matrix-based flexibility and stiffness methods, which form the basis for computer-aided structural analysis and are essential for solving large-scale structural problems. - 3. To introduce the fundamental concepts of Finite Element Analysis (FEA) and its application in solving engineering field problems through mathematical modeling, variational principles, and numerical techniques. | Text Book T1 | Wang, C. K. (1983). Intermediate Structural Analysis, McGraw-Hill. | |-------------------|--| | Text Book T2 | Reddy, C. S. (2019). Basic Structural Analysis, McGraw Hill Education. | | Reference Book R1 | Punmia, B. C., Jain, A. K., & Jain, A. K. (2017). Theory of Structures, Laxmi Publications. | | Reference Book R2 | Reddy, J. N. (2006). An Introduction to the Finite Element Method, McGraw-Hill. | | Reference Book R3 | Krishnamoorthy, C. S. (1994). Finite Element Analysis: Theory and Programming, Tata McGraw Hill. | | Lecture
Nos. | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer Teaching e. Project Based Learning. | Reference/ Text
Book | |-----------------|---|---|-------------------------| | 1 | Introduction to structural analysis | a. Group Learning Teaching | Wang, C. K. (1983) | | 2 | Review of force method | a. Group Learning Teaching | Wang, C. K. (1983) | | 3 | Review of displacement method | a. Group Learning Teaching | Wang, C. K. (1983) | | 4 | Concept of static indeterminacy | a. Group Learning Teaching | Reddy, C. S. (2019) | | 5 | Degree of Static Indeterminacy (DSI) for beams, frames, and trusses | a. Group Learning Teaching | Reddy, C. S. (2019) | | 6 | Concept of kinematic indeterminacy | a. Group Learning Teaching | Reddy, C. S. (2019) | | 7 | Degree of Kinematic
Indeterminacy (DKI) for beams
and frames | a. Group Learning Teaching | Reddy, C. S. (2019) | | 8 | Comparative analysis: Force vs
Displacement Methods | a. Group Learning Teaching | Reddy, C. S. (2019) | | 9 | Introduction to Flexibility Method | a. Group Learning Teaching | Wang, C. K. (1983) | | 10 | Flexibility coefficients | a. Group Learning Teaching | Wang, C. K. (1983) | | 11 | Flexibility matrix formulation | a. Group Learning Teaching | Punmia, B. C. (2017) | | 12 | Properties of flexibility matrix | a. Group Learning Teaching | Punmia, B. C. (2017) | | Lecture
Nos. | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer Teaching e. Project Based Learning. | Reference/ Text
Book | |-----------------|---|---|-------------------------| | 13 | Application: Continuous beam with 1 redundant | a. Group Learning Teaching | Wang, C. K. (1983) | | 14 | Application: Continuous beam with 2 redundants | a. Group Learning Teaching | Wang, C. K. (1983) | | 15 | Solving by superposition and compatibility | a. Group Learning Teaching | Wang, C. K. (1983) | | 16 | Numerical examples:
Flexibility method | a. Group Learning Teaching | Punmia, B. C. (2017) | | 17 | Introduction to stiffness method | a. Group Learning Teaching | Wang, C. K. (1983) | | 18 | Stiffness coefficient | a. Group Learning Teaching | Wang, C. K. (1983) | | 19 | Development of stiffness matrix for beams | a. Group Learning Teaching | Reddy, C. S. (2019) | | 20 | Global vs local stiffness matrix | a. Group Learning Teaching | Reddy, C. S. (2019) | |
21 | Relationship between flexibility and stiffness matrices | a. Group Learning Teaching | Reddy, C. S. (2019) | | 22 | Boundary conditions in stiffness method | a. Group Learning Teaching | Wang, C. K. (1983) | | 23 | Application: Continuous beam using stiffness method | a. Group Learning Teaching | Wang, C. K. (1983) | | Lecture
Nos. | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer Teaching e. Project Based Learning. | Reference/ Text
Book | |-----------------|---|---|---------------------------------| | 24 | Numerical examples: Stiffness method | a. Group Learning Teaching | Punmia, B. C. (2017) | | 25 | Analysis of rigid jointed frames using flexibility method | a. Group Learning Teaching | Wang, C. K. (1983) | | 26 | Analysis of pin-jointed frames using flexibility method | a. Group Learning Teaching | Reddy, C. S. (2019) | | 27 | Analysis of rigid jointed frames using stiffness method | a. Group Learning Teaching | Wang, C. K. (1983) | | 28 | Analysis of pin-jointed frames using stiffness method | a. Group Learning Teaching | Wang, C. K. (1983) | | 29 | Comparison: Flexibility vs
Stiffness method for frames | a. Group Learning Teaching | Reddy, C. S. (2019) | | 30 | Numerical examples: Frames (combined) | a. Group Learning Teaching | Punmia, B. C. (2017) | | 31 | Historical background of Finite
Element Analysis (FEA) | a. Group Learning Teaching | Reddy, J. N. (2006) | | 32 | Mathematical modeling of field problems | a. Group Learning Teaching | Reddy, J. N. (2006) | | 33 | Governing equations and types of models | a. Group Learning Teaching | Reddy, J. N. (2006) | | 34 | Boundary, Initial, and
Eigenvalue problems | a. Group Learning Teaching | Krishnamoorthy,
C. S. (1994) | | Lecture
Nos. | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology based Learning d. Peer Teaching e. Project Based Learning. | Reference/ Text
Book | |-----------------|--|---|---------------------------------| | 35 | Weighted residual methods | a. Group Learning Teaching | Reddy, J. N. (2006) | | 36 | Variational formulation and applications | a. Group Learning Teaching | Reddy, J. N. (2006) | | 37 | Ritz technique – Introduction and Example | a. Group Learning Teaching | Reddy, J. N. (2006) | | 38 | Basic concepts of finite elements | a. Group Learning Teaching | Krishnamoorthy,
C. S. (1994) | | 39 | One-dimensional element formulation (bar/spring) | a. Group Learning Teaching | Reddy, J. N. (2006) | | 40 | Summary and comparison of structural methods | a. Group Learning Teaching | Wang, C. K. (1983) | Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination. | Evaluation
Component | Duration | Weightage | Date | Syllabus (Lec.No.) | Remarks | |-------------------------|-------------------------|-----------|------------|--------------------|---------| | Test 1 | 60 Minutes | 20 | 18-08-2025 | 1-15 | СВ | | Test 2 | 60 Minutes | 20 | 08-04-2025 | 16-30 | ОВ | | Quiz/Assignment/Lab | Throughout the Semester | 20 | ** | ** | СВ | | Comprehensive Exam | 3 Hours | 40 | 07-05-2025 | 1-40 | СВ | ^{**} To be announced in the class CB= Close Book Exam OB= Open Book **Make-up Policy:** Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must. **General:** It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, et Date: 07/01/2025 Mr.DILIP MISHRA Instructor-in-charge Faculty of Science and Technology Second Semester, 2024-2025 Course Handouts | Course Code | Course Title | L | P | T | U | |-------------|---|---|---|---|---| | CE324 | Highway and Transportation
Engineering | 3 | 2 | 0 | 4 | ### **Instructor-in-charge: Mr.DILIP MISHRA** ## **Scope & Objective of the Course:** - 1. To understand the principles of highway planning and alignment. - 2. To learn about engineering surveys, traffic engineering, and geometric design. - 3. To acquire knowledge on pavement design and construction techniques. - 4. To understand airport planning, layout and geometric standards. | Text Book (T1) | Highway Engineering – S.K. Khanna & C.E.G. Justo, 10th edition, 2014 – Nem Chand & Bros., Roorkee. | |---------------------|---| | Text Book (T2) | Transportation Engineering – L.R. Kadiyali, 9th edition, 2013 – Khanna Publishers, New Delhi. | | Reference Book (R1) | Principles of Transportation Engineering – Partha Chakroborty & Animesh Das, 2nd edition, 2005 – Prentice Hall of India, New Delhi. | | Lecture
Nos. | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology Based Learning d. Peer Teaching e. Project Based Learning. | Reference/
Text Book | |-----------------|---|---|---| | 1 | Introduction to highway planning and development in India | a. Group Learning Teaching | T1: S.K Khanna
&C.E.G Justo,
PP 1-5 | | 2 | History and necessity of highway development | a. Group Learning Teaching | T1: PP 9-12 | | 3 | Principles of highway alignment and requirements | a. Group Learning Teaching | T1: PP 9-12 | | Lecture
Nos. | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology Based Learning d. Peer Teaching e. Project Based Learning. | Reference/
Text Book | |-----------------|---|---|-------------------------| | 4 | Engineering surveys for highway location | a. Group Learning Teaching | T1: PP 13–15 | | 5 | Map preparation and highway drawings | a. Group Learning Teaching | T1: PP 15–17 | | 6 | Vehicle characteristics in transportation | a. Group Learning Teaching | T1: PP 18–20 | | 7 | Driver and road user characteristics | a. Group Learning Teaching | T1: PP 21–23 | | 8 | Traffic terminals and their role | a. Group Learning Teaching | T1: PP 24–26 | | 9 | Traffic control: Signals and Signs | a. Group Learning Teaching | T1: PP 27–30 | | 10 | Cross-section elements of highways | a. Group Learning Teaching | T1: PP 31–34 | | 11 | Horizontal alignment and curves | a. Group Learning Teaching | T1: PP 35–38 | | 12 | Vertical alignment and summit curves | a. Group Learning Teaching | T1: PP 39–42 | | 13 | Valley curves and transition curves | a. Group Learning Teaching | T1: PP 43–45 | | 14 | Surface drainage system for highways | a. Group Learning Teaching | T1: PP 46–49 | | 15 | Subsoil drainage techniques | a. Group Learning Teaching | T1: PP 50–52 | | Lecture
Nos. | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology Based Learning d. Peer Teaching e. Project Based Learning. | Reference/
Text Book | |-----------------|--|---|-----------------------------| | 16 | Geometric features of hill roads | a. Group Learning Teaching | T1: PP 53–56 | | 17 | Curve layout in hilly terrain | a. Group Learning Teaching | T1: PP 57–59 | | 18 | Introduction to traffic flow theory | a. Group Learning Teaching | T2: L.R.
Kadiyali, PP 1– | | 19 | Speed-density-flow relationships | a. Group Learning Teaching | T2: PP 5–8 | | 20 | Flow-density relationships | a. Group Learning Teaching | T2: PP 9–11 | | 21 | Traffic data collection techniques | a. Group Learning Teaching | T2: PP 12–15 | | 22 | Delay studies and measurement | a. Group Learning Teaching | T2: PP 16–18 | | 23 | Design and types of parking facilities | a. Group Learning Teaching | T2: PP 19–22 | | 24 | Road signs and traffic control devices | a. Group Learning Teaching | T2: PP 23–26 | | 25 | Rotary intersections and their design | a. Group Learning Teaching | T2: PP 27–29 | | 26 | Highway lighting systems | a. Group Learning Teaching | T2: PP 30–33 | | Lecture
Nos. | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology Based Learning d. Peer Teaching e. Project Based Learning. | Reference/
Text Book | |-----------------|---|---|-------------------------| | 27 | Introduction to highway materials | a. Group Learning Teaching | T1: PP 60–63 | | 28 | Properties of subgrade and pavement materials | a. Group Learning Teaching | T1: PP 64–67 | | 29 | Soil testing methods | a. Group Learning Teaching | T1: PP 68–71 | | 30 | Aggregate and bitumen
testing | a. Group Learning Teaching | T1: PP 72–75 | | 31 | Flexible pavement types and design | a. Group Learning Teaching | T1: PP 76–79 | | 32 | Rigid pavements: stresses and types | a. Group Learning Teaching | T1: PP 80–83 | | 33 | IRC guidelines for pavement design | a. Group Learning Teaching | T1: PP 84–87 | | 34 | Water Bound Macadam construction | a. Group Learning Teaching | T1: PP 88–90 | | 35 | Bituminous pavement construction | a. Group Learning Teaching | T1: PP 91–93 | | 36 | Cement concrete pavements and joints | a. Group Learning Teaching | T1: PP 94–97 | | 37 | Modern pavement materials | a. Group Learning Teaching | T1: PP 98–100 | | Lecture
Nos. | Topics to be
Covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology Based Learning d. Peer Teaching e. Project Based Learning. | Reference/
Text Book | |-----------------|---------------------------------------|---|---| | 38 | Airport planning: terms and scope | a. Group Learning Teaching | R1: Partha
Chakroborty &
A. Das, PP 1–4 | | 39 | Site selection, zoning, and surveys | a. Group Learning Teaching | R1: PP 5–7 | | 40 | Runway orientation and taxiway design | a. Group Learning Teaching | R1: PP 8–10 | Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination. | Evaluation
Component | Duration | Weightage | Date | Syllabus (Lec.No.) | Remarks | |-------------------------|-------------------------|-----------|------------|--------------------|---------| | Test 1 | 60 Minutes | 10 | 18-02-2025 | 1-15 | СВ | | Test 2 | 60 Minutes | 10 | 09-04-2025 | 16-30 | ОВ | | Quiz/Assignment/Lab | Throughout the Semester | 10 | ** | ** | СВ | | Comprehensive Exam | 3 Hours | 70 | 07-05-2025 | 1- 40 | СВ | ^{**} To be announced in the class CB= Close Book Exam OB= Open Book **Make-up Policy:** Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must. **General:** It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc Date: 08/01/2025 Mr.DILIP MISHRA Instructor-in-charge Faculty of Science and Technology Second Semester, 2024-2025 Course Handouts | Course Code | Course Title | L | P | T | U | |-------------|------------------------------|---|---|---|---| | CE322 | Design of Steel Structure II | 3 | 0 | 0 | 3 | ## **Instructor-in-charge: Mr.DILIP MISHRA** ### **Learning Outcomes:** #### After successful completion of the course student will be able to - 1. To educate the student about the behavior of plate girders. - 2. To understand the behavior of members subjected to combined forces. - 3. To understand the behavior of column bases and gantry girders. - 4. To understand the behavior of eccentric and moment connections. | Text Book(s) T1 | Design of steel structure – N. Subramanian | | |-----------------------|--|--| | Text Book T2 | Limit state of Design of steel structure – S.K. Duggal | | | Reference Book (s) R1 | Design of steel structure – K. S. Sai Ram | | | Reference Books R2 | Limit state of Design of steel structure – V. L. Shah | | #### Lecture-wise-plan: | Lecture
Nos. | Learning
Objective | Topics to be covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology Based Learning d. Peer Teaching e. Project Based Learning. | Reference
(Ch./Sec.
/Pg No) | |-----------------|----------------------------------|---|--|-----------------------------------| | 1 | Plate girders with solid webs | Components of a plate girder, typical section. | a. Group Learning and
Teaching | T1 | | 2-3 | Plate girders
with solid webs | Proportioning of
the section,
design bending
strength. | a. Group Learning and
Teaching | T1 | | Lecture
Nos. | Learning
Objective | Topics to be covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology Based Learning d. Peer Teaching e. Project Based Learning. | Reference
(Ch./Sec.
/Pg No) | |-----------------|--|--|---|-----------------------------------| | 4-5 | Plate girders with solid webs | Design shear
strength,
stiffened web
panels | a. Group Learning and
Teaching | T1 | | 6 | Plate girders with solid webs | Minimum wed
thickness,
bearing
stiffeners, load
carrying
stiffeners | a. Group Learning and
Teaching | T1 | | 7-8 | Plate girders with solid webs | numerical | a. Group Learning and
Teaching | T1 | | 9-10 | Members
subjected to
combined forces | Combined shear & bending | a. Group Learning and
Teaching | T2 | | 11 | Members
subjected to
combined forces | Combined axial forces & bending moment | a. Group Learning and
Teaching | Т2 | | 12-13 | Members
subjected to
combined forces | Section strength, overall member combinations. | a. Group Learning and
Teaching | Т2 | | 14-16 | Members
subjected to
combined forces | Design of
members
subjected to
combined forces | a. Group Learning and
Teaching | Т2 | | 17-18 | Column bases
and gantry
girders | Types of column bases | | | | 19 | Column bases
and gantry
girders | Slab bases, gusset base | a. Group Learning and
Teaching | T1 | | Lecture
Nos. | Learning
Objective | Topics to be
covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology Based Learning d. Peer Teaching e. Project Based Learning. | Reference
(Ch./Sec.
/Pg No) | |-----------------|---------------------------------------|--|---|-----------------------------------| | 20-21 | Column bases
and gantry
girders | Moment resisting base plates. | a. Group Learning and
Teaching | T1 | | 22-23 | Column bases
and gantry
girders | Loads and load combinations | a. Group Learning and Teaching | Т1 | | 24 | Column bases
and gantry
girders | Typical sections,
design of gantry
girders | a. Group Learning and Teaching | T1 | | 25-26 | Eccentric and moment connections | Analysis of bolt / weld groups. | a. Group Learning and Teaching | T1 | | 27-28 | Eccentric and moment connections | Connection configuration, beams to column connections | a. Group Learning and
Teaching | T1 | | 30-32 | Eccentric and moment connections | Beam to beam connections, web splice and its connections. | a. Group Learning and
Teaching | T1 | | 33-34 | Roof trusses | Types of roof trusses | a. Group Learning and
Teaching | T1 | | 35-38 | Roof trusses | Dead, imposed
and wind load,
load combination | a. Group Learning and
Teaching | T1 | | 39-40 | Roof trusses | Design of purlins,
analysis & design
of roof trusses | a. Group Learning and
Teaching | T1 | Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination. | Evaluation
Component | Duration | Weightage | Date | Syllabus (Lec.No.) | Remarks | |-------------------------|-------------------------|-----------|------------|--------------------|---------| | Test 1 | 60 Minutes | 20 | 19-02-2025 | 1-10 | СВ | | Test 2 | 60 Minutes | 20 | 09-04-2025 | 11-24 | ОВ | | Quiz/Assignment/Lab | Throughout the Semester | 20 | ** | ** | СВ | | Comprehensive Exam | 3 Hours | 40 | 12-05-2025 | 25-40 | СВ | ^{**} To be announced in the class CB= Close Book Exam OB= Open Book **Make-up Policy:** Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must. **General:** It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc Date: 07/01/2025 Mr.DILIP MISHRA Instructor-in-charge Faculty of Science and Technology Second Semester, 2024-2025 Course Handouts | Course Code | Course Title | L | P | T | U | |-------------|-----------------------------------|---|---|---|---| | CE321 | Hydraulics and Hydraulic Machines | 3 | 2 | 0 | 4 | ### Instructor-in-charge: Mr.DILIP MISHRA ## **Scope and Objective Learning:** - 1. The problems encountered by man in the field of water supply, irrigation, navigation and water- power, resulted in the development of the fluid mechanics. - 2. Will show how the principles can be applied to the solution of practical engineering problems such as water supply systems, waste water treatment facilities, dam spillways, flow-meters, hydraulic shock absorbers etc. - 3. Different kinds of flow of fluid under different conditions have also been included so that the students learn to apply in practical life. | Text Book T1 | Modi, P.N. and Seth, S.M., Hydraulics and Fluid Mechanics, Standard Book House, 15 th ed., 2005. | |-------------------
---| | Text Book T2 | Patra, K.C., Hydrology and water Resources Engineering, Narosa Publishing House, 2001. | | Text Book T3 | Moondra, H.S., Gupta, R., Lab. Manual for Civil Engineering, CBS Publishers & Dist, 2 nd ed., 2000. | | Reference Book R1 | Fox, R.W. and McDonald, A.T., Introduction to Fluid Mechanics, John Wiley and Sons Inc., Singapore, Fifth Edition, 2001 | | Reference Book R1 | Arora, K.R., Fluid Mechanics, Hydraulics and Hydraulic Machines, Standard Publishers, Delhi, 1985. | | Reference Book R2 | Simon, A.L., Hydraulics, Willey, John & Sons, New York, 1986. | | Reference Book R3 | Shames, I.H., Mechanics of Fluids, McGraw-Hill Company,
Second Edition, 1982 | | Reference Book R4 | Douglas J. F., Gasiorek J. M. and Swaffield J. A., Fluid Mechanics, Pearson Education, Third Indian reprint, 2004. | | Lecture
Nos. | Learning
Objective | Topics to be covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology Based Learning d. Peer Teaching e. Project Based Learning. | Reference
(Ch./Sec.
/Pg No) | |-----------------|---|--|---|-----------------------------------| | 1-2 | Introduction to
the Hydraulics
and fluid
mechanics. To
establish a base
and a perspective
for the study of
subject | Introduction, Fundamental definitions and concepts | a. Group Learning and
Teaching | T1 | | 3-7 | To study the
behavior of real
fluid flow in
pipes and
channels | Boundary layer
theory | a. Group Learning and Teaching | T1 | | 8-11 | Analysis of uniform fluid flow in open channel | Flow in open channels | a. Group Learning and Teaching | T1 | | 12-14 | Analysis of Non
uniform fluid
flow in open
channel | Non-uniform flow in channels | a. Group Learning and Teaching | T1 | | 15-17 | Design of Hydraulic Structures such as Parshall Flume, Gates, Culverts etc. | Hydraulic
Structures | a. Group Learning and
Teaching | T1 | | Lecture
Nos. | Learning
Objective | Topics to be covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology Based Learning d. Peer Teaching e. Project Based Learning. | Reference
(Ch./Sec.
/Pg No) | |-----------------|--|---|---|-----------------------------------| | 18-21 | Analysis of Fluid flow around submerged objects | Lift & Drag | a. Group Learning and Teaching | | | 22-24 | Use of turbines,
different kind of
turbines, their
functionality and
uses | Fluid machines,
Francis Turbine,
Kaplan turbine
etc. | a. Group Learning and Teaching | Т2 | | 25-27 | Use of pumps,
different kind of
pumps, their
functionality and
uses | Centrifugal Pump,
Reciprocating
Pump | a. Group Learning and
Teaching | Т2 | | 28-30 | Introduction to hydrology and hydrological cycle and presentation of basic concepts of hydrology and development of a flavor for application of hydrology to the solution of a range of problems | Elements of
Hydrology | a. Group Learning and
Teaching | T2 | | 31-34 | To present
hydrologic inputs
such as | Precipitation | a. Group Learning and
Teaching | Т1 | | Lecture
Nos. | Learning
Objective | Topics to be
covered | Teaching Learning Strategies: a. Group Learning and Teaching b. Game Based Learning c. Technology Based Learning d. Peer Teaching e. Project Based Learning. | Reference
(Ch./Sec.
/Pg No) | |-----------------|---|-------------------------|---|-----------------------------------| | | Precipitation measurement and method of analyzing the measured precipitation, Network design and presentation of precipitation data | | | | | 35-38 | To present
stream flow
measurement and
hydrograph
analysis
techniques of
stream flow
measurement and
sources of stream
flow hydrologic
inputs | Stream flow | a. Group Learning and Teaching | T1 | | 39-42 | To deal with the precipitation-runoff relation. Given the amount of surface runoff, the surface runoff hydro would be estimated by unit hydrograph method | Hydrograph | a. Group Learning and
Teaching | T1 | Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination. | Evaluation
Component | Duration | Weightage | Date | Syllabus (Lec.No.) | Remarks | |-------------------------|-------------------------|-----------|------------|--------------------|---------| | Test 1 | 60 Minutes | 20 | 19-02-2025 | 1-15 | СВ | | Test 2 | 60 Minutes | 20 | 09-04-2025 | 16-30 | ОВ | | Quiz/Assignment/Lab | Throughout the Semester | 20 | ** | ** | СВ | | Comprehensive Exam | 3 Hours | 40 | 14-05-2025 | 1-42 | СВ | ^{**} To be announced in the class **Make-up Policy:** Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must. **General:** It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc Date: 02/01/2025 Mr.DILIP MISHRA Instructor-in-charge CB= Close Book Exam OB= Open Book